
COTTONTAIL: Large Language Model-Driven Concolic Execution for
Highly Structured Test Input Generation

Haoxin Tu
Singapore Management University

haoxintu@gmail.com

Peng Chen
Independent Researcher

spinpx@gmail.com

Seongmin Lee
University of California, Los Angeles

seongminlee@sigsoft.org

Lingxiao Jiang
Singapore Management University

lxjiang@smu.edu.sg

Yuxian Li
Singapore Management University

liyuxianjnu@gmail.com

Marcel Böhme
Max Planck Institute for Security and Privacy

marcel.boehme@acm.org

Abstract—How can we perform concolic execution to generate
highly structured test inputs for systematically testing parsing
programs? Existing concolic execution engines are significantly
restricted by (1) input structure-agnostic path constraint selec-
tion, leading to the waste of testing effort or missing coverage;
(2) limited constraint-solving capability, yielding many syntac-
tically invalid test inputs; (3) reliance on manual acquisition
of highly-structured seeds, resulting in non-continuous testing.

This paper proposes COTTONTAIL, a new Large Language
Model (LLM)-driven concolic execution engine, to mitigate
the above limitations. A more complete program path rep-
resentation, named Expressive Coverage Tree (ECT), is first
constructed to help select structure-aware path constraints.
Later, an LLM-driven constraint solver based on a Solve-
Complete paradigm is designed to solve the path constraints
smartly to get test inputs that are not only satisfiable to the
constraints but also valid to the input syntax. Finally, a history-
guided seed acquisition is employed to obtain new highly
structured test inputs either before testing starts or after testing
is saturated. We implemented COTTONTAIL on top of SYMCC
and evaluated eight extensively tested open-source libraries
across four different formats (XML, SQL, JavaScript, and
JSON). The experimental results are promising: COTTONTAIL
significantly outperforms baseline approaches by 30.73% and
41.32% on average in terms of line and branch coverage.
Besides, COTTONTAIL found six previously unknown vulnera-
bilities (six CVEs assigned). We have reported these issues to
developers, and four out of them have been fixed so far.

1. Introduction

Parsing software systems, such as XML and SQL li-
braries, are widely used in modern systems. However, even
after years of intensive testing efforts, residual vulnerabili-
ties persist, reflecting the complexity and attack surface of
such components. Highly structured (or syntactically valid)
test inputs are demanded to comprehensively stress the
parsing test programs; as only the parser-checking logic is
passed, the deeper application logic can be examined. Con-

siderable effort has been devoted to generating structured
test inputs, including black, grey, and white-box fuzzing-
based approaches. Among them, white-box fuzzing via
concolic execution has shown considerable capabilities of
test input generation for general test programs. Given a
seed input, a concolic execution engine starts by concretely
executing the program while symbolically tracking the same
execution path to collect path constraints. The negation of
path constraints is applied to explore alternative branches.
An off-the-shelf constraint solver is used to solve constraints
and generate new test cases that satisfy the negated con-
straints, enabling the path exploration of uncovered paths.
Benefiting from the soundness of test case generation and a
systematic way for path exploration, it has been promising
and applied in many areas [1]–[7].

Although promising, existing concolic executors (e.g.,
SYMCC [1] and MARCO [3]) remain significantly hindered
by three fundamental limitations in their treatments for the
problems of which to solve, how to solve, and how to acquire
new seed inputs when handling parsing test programs.

#L1: The input structure-agnostic path constraints se-
lection is either redundant or overly aggressive. When
path constraints are generated during concolic execution, we
need to consider the problem of which path constraints to
solve. A straightforward idea is to select all path constraints,
hoping to explore all paths in test programs. However,
such a structure-agnostic option leads to many redundant
path constraints, making the testing process impractical.
Alternatives are to select the path constraints based on
some heuristics, e.g., bit-wise coverage map Bitmap from
SYMCC [1] and Concolic State Transition Graph (CSTG)
from MARCO [3]. Unfortunately, both guides are built on
the basis of binary code, which aggressively eliminates
interesting code coverage. This is mainly due to the lack
of expressive coverage information in the path constraints,
making them difficult to distinguish and select interesting
paths (detailed in §3.1.1).

#L2: The solutions from constraint solving only comply
with satisfiability while neglecting syntactic validity. To

1

obtain high-quality (especially for highly structured) test
cases by solving constraints, an important question is how to
solve the constraints. Traditional constraint solvers (e.g., Z3)
equipped with concolic executors usually solve constraints
for satisfiability, while ignoring the syntactic validity of
newly generated test cases (see more explanation in §2).
Such a limitation oftentimes causes the engine to produce
syntactically invalid test cases, rendering the testing effort
largely in vain. We argue that an optimal solution for
constraints should not only comply with satisfiability, but
also be aware of syntactic validity. Also, traditional solvers
can not generate new test cases with flexible sizes by design,
as the number of symbolized bytes is restricted by the seed,
further decreasing the effectiveness of concolic testing.
#L3: The acquisition of highly structured seeds before
testing starts or after testing is saturated is difficult. Ex-
isting engines highly rely on manually collected initial seeds
from bug repositories to start testing, where the manual
work is often time-consuming. Randomly generating seeds
could be an alternative, but it tends to be ineffective, as
many random seeds do not boost coverage, and it would
be wasteful to continue testing if the testing is saturated
(i.e., code coverage has plateaued). We thus need to acquire
fresh seeds to change the situation, but existing concolic
executors are unable to generate such seed inputs during
testing progress. Again, it is possible to naively feed random
seeds into the testing process after saturation, but it rarely
improves code coverage (as demonstrated in §5.2).

To overcome the above limitations, we propose COT-
TONTAIL1, a new Large Language Model (LLM)-driven
concolic execution engine to generate highly structured test
inputs effectively. Our key insights are threefold. First, We
found that for parsing programs, the inputs are processed
structurally, e.g., using structured branches (either switch-
case, if-else, or others) to handle different input bytes. Thus,
we can build what we call structural program paths, i.e.,
paths that diverge depending on specific input values, to
help not only represent meaningful and complete program
paths but also reduce redundant path constraints, addressing
limitation #L1. Second, given the strong input understanding
and completion capabilities of LLMs [8], it could be promis-
ing to leverage them to (1) perform syntax-aware solving,
i.e., solve the constraints for not only satisfiability but also
syntax validity; (2) conduct flexible solution completing,
i.e., complete the solution to be syntactically valid and
with flexible sizes, thus alleviating limitation #L2 (more
details in §2). Third, benefiting from LLM knowledge and
memorization [9]–[12], LLM could be induced to produce
new meaningful seed inputs, thus mitigating limitation #L3.

Based on the above three insights, we design three new
components in COTTONTAIL to explore structural program
paths for highly structured test input generation.
• Structure-aware Constraint Selection. To address the

limitation of which to solve, a branch information collec-

1. Cottontail rabbits are known for their structured running patterns (e.g.,
zigzagging) to evade predators using their cotton-ball tails. We used it to
reflect our aim for the generation of highly structured test input.

tor is first introduced during the instrumentation to help
construct a more complete representation of structural
program path. Then, based on the representation, a new
coverage map, named Expressive Coverage Tree (ECT), is
constructed to keep track of program branch status (e.g.,
taken or untaken) with expressive semantic information.
Finally, guided by ECT, a path constraint selector is
facilitated to conduct structure-aware path selection.

• LLM-driven Constraint Solving. To mitigate the lim-
itation of how to solve, an LLM-driven solver, which
facilitates Solve-Complete paradigm, is leveraged to solve
the path constraints. The paradigm first solves constraints
for satisfiability and then completes the solution for the
syntax validity. Also, the LLM-generated test cases can
have a flexible size, alleviating the restrictions of generat-
ing only test cases with fixed sizes. Moreover, to increase
the robustness of LLMs, a test case validator is designed
to refine unsound results from LLMs.

• History-guided Seed Acquisition. To address the limi-
tation of how to acquire new seeds, history-guided seed
acquisition strategies are designed for different timings.
Before testing, we prompt LLMs to generate highly struc-
tured test inputs as initial seeds that may likely trigger
new vulnerabilities based on their memories (e.g., from
historical bug repositories). During testing, a history cov-
erage recorder is utilized to record the mapping between
the test input and its code coverage. When the coverage
gets saturated, we prompt LLMs with Chain-of-Thought
(CoT) [13] based on the historical mapping to generate
fresh seeds that are likely to cover unexplored features.
In short, COTTONTAIL is a novel concolic execution en-

gine that is capable of structure-aware constraint selection,
smart constraint solving, history-guided seed acquisition
for robust generation of highly structured test inputs. We
position COTTONTAIL as a new white-box fuzzing that can
effectively explore both input space and execution space to
advance the field of automated testing (see more detailed
comparison with existing structure-aware fuzzing in §8).

We have prototyped COTTONTAIL on top of SYMCC
[1] and demonstrated its test input generation capabilities
over eight widely tested libraries across four different for-
mats (XML, SQL, JavaScript, and JSON). Our experi-
ments show promising results. Compared with state-of-the-
art approaches (i.e., SYMCC [1], MARCO [3], and their
variants), COTTONTAIL significantly outperforms them by
covering 30.73% more lines and 41.32% more branches on
average. During the same period, COTTONTAIL significantly
improves (more than 100x) the parser checking passing
rate over the generated test cases. Our ablation studies
also demonstrate that each component in COTTONTAIL has
contributed to the better results. We have also found six
previously unknown memory-related vulnerabilities and re-
ported them to the developers (six new CVE IDs have been
assigned to them, and four out of six have been fixed).

Contributions. We make the following contributions:
• To our knowledge, COTTONTAIL is the first LLM-driven

concolic execution engine for highly structured test input

2

Libxml2 SQLite MuJS JSON-C
0

10
20
30
40
50
60
70

Pa
rs

er
-c

he
ck

in
g

Pa
ss

in
g

Ra
te

 (%
)

2.1%

14.7%

0.1%

12.46%

46.01%

62.69%

22.74%

43.78%

Z3
LLM-driven solver

Figure 1. Comparison of parser checking pass rates between traditional
solver (i.e., Z3) and LLM-driven solver (designed in COTTONTAIL).

generation, automatically working in a white-box manner.
• Three new components, including structure-aware path

constraint selection, smart LLM-driven constraint solving,
and history-guided seed acquisition, are designed to make
COTTONTAIL effective and practical.

• Extensive experiments are conducted to demonstrate the
capabilities of COTTONTAIL. The results show that COT-
TONTAIL can not only significantly outperform baseline
approaches but also is practical to find new vulnerabilities.

• The prototype COTTONTAIL is open source2 to foster fu-
ture research that combines program analysis and LLMs.

2. Background and Motivation

Concolic Execution. Concolic execution, also known as
dynamic symbolic execution, integrates symbolic and con-
crete execution to explore program paths systematically.
Concrete values guide the actual execution path, ensuring
feasibility, while symbolic values enable exploration of
alternative paths by generating new test cases. In recent
years, compilation-based concolic execution (e.g., SYMCC
[1] and MARCO [3]) has gained popularity due to its su-
perior performance and practical applicability. In particular,
concolic execution is a key component of the tools for the
winning team for both old DARPA CGC [14], [15] and
recent AIxCC Atlanta [16]. Technically, given an initial seed
input, these engines embed symbolic reasoning/tracing logic
directly into compiled binaries and collect path constraints
at runtime. By negating selected path constraints, the engine
produces new constraints representing unexplored branches,
which are then solved using off-the-shelf constraint solvers
(e.g., Z3 [17]) to generate new test cases. Note that the
new test cases usually hold the same size as the seed input
because the size of symbolic bytes is fixed when the seed
input is fed into the concolic engine in the initial phase. The
concolic testing process is continued by iteratively feeding
the new test cases back into the execution loop, which
is ideally an endless process. However, concolic testing
naturally encounters a saturation point when it can no longer
cover new code due to the lack of diversity in test inputs
(e.g., limited by the input size) [15], [18], [19] or the
restricted covering capability of harnesses/test drivers [20]–
[22]. When testing is saturated, the best practice is to acquire
fresh new seeds that drive the exploration forward for long-
term continuous testing. In short, which to solve determines
both effectiveness and efficiency of testing, how to solve

2. https://github.com/Cottontail-Proj/cottontail

SMU Classification: Restricted

</> Response
Let’s solve the constraint step by step:
1. The constraint mask is [k!95] and we now solve it based on the given constraint.

- The constraint suggests the value should be large or equal to ASCII 0x39. Considering the previous
string `r`, the solution `e` should satisfy the requirements, as `return` is a keyword in JavaScript.

2. The flexible mask is [xxx] and we now complete it with other flexible size strings:
- Since previous string starting with `re` after solving, complete `[xxx]` with `turn y;} print(a[100]);`,

as `return` is a keyword, and `y` and `a` are defined variables.
3. Final output:

Normal

</> System Prompt (Solve-Complete Paradigm with Chain of Thought)
You are a smart Constraint Solver.
Given a constraint and a marked test input string, please generate new test case step by step:
1. Identify the location of Constraint Mask (`[k!n]`) and solve it with the solution of the constraint:

- The solution is not arbitrarily chosen; instead, make the combined string align with input syntax,
such as keywords, defined functions, or variable names to ensure the resulting string remains valid.

2. Identify the location of Flexible Mask (`[xxx]`) and complete it with a flexible size string:
- The replacement is not randomly selected: instead, follow the syntax of JavaScript and make the

whole string remaining a valid JavaScript code.
3. Ensure final output is enclosed with ```.
</> User Prompt
Given the path constraint ```bvsge #x00000039 (concat #x000000 k!95))``` and the marked seed input
you need to change: ```c = 30000; a = []; for (i = 0; i < 2 * c; i += 1) {a.push(i%c);} a.sort(function (x, y)
{ r[k!95][xxx]```, what is the new test input?

```c = 30000; a = []; for (i = 0; i < 2 * c; i += 1) {a.push(i%c);} a.sort(function (x, y) {return y;}
print(a[100]);```

Constraint solving prompt

Figure 2. The Solve-Complete paradigm and LLM’s response. In the upper
box, the underlined text represents different formats, and the colored text
enclosed indicates either constraints or a marked test input string.

affects the effectiveness of test case generation, while how
to acquire new seeds decides the continuity of testing.

LLMs for Test Input Generation. Large Language Models
(LLMs) are popular AI systems designed to predict the next
word or token in a sequence based on the context of pre-
ceding tokens. Recent emergence of LLMs has driven their
application in numerous security-related domains [23]–[25].
However, most of the LLM-based systems lack analytical
depth and robustness, which limits their effectiveness in
more complex scenarios such as systematic program un-
derstandings [26]. Two promising directions to mitigate the
problem are either to integrate advanced program analysis or
design logical Chain-of-Thought (CoT) prompts to further
improve the reliability and robustness of the LLM-based
system [27], [28]. While LLMs have been combined with
black-box [29], [30] or grey-box [20], [31] fuzzing tech-
niques for structured test input generation, to our knowledge,
no study has yet attempted to integrate LLMs with more
systematic techniques like concolic execution to enhance
the security analysis. We believe it could be promising to
empower the potential of LLMs for more rigorous security
guarantees by integrating LLMs with concolic testing.

Motivation: Investigative Study. It is evident that there is
a need for a new path constraint selection strategy to select
optimal subsets of constraints and a new seed acquisition to
generate highly structured inputs to improve both effective-
ness and continuity of concolic testing. It may not be clear
why we need an LLM-driven solver (which served as our
core innovation) to generate highly structured test inputs.

To justify our motivation, we conducted an investi-
gation study to show the significant limitations of tra-
ditional constraint solvers and how an LLM-driven con-
straint solver can mitigate them. To do so, we first se-
lected four libraries that process four different input formats
(XML/SQL/JavaScript/JSON) as test programs, and
ran them using the existing concolic executor SYMCC.
Then, we collected the generated path constraints and used
a traditional solver Z3 to solve them to obtain new test

3

https://github.com/Cottontail-Proj/cottontail


SMU Classification: Restricted

Cottontail (SP’26)

IR

Branch Information
Collector (§3.1.1)

Symbolic Capability
Reasoner Binary

Expressive Coverage
Maintainer

(§3.1.2)

LLM-driven
Constraint Solver

(§3.2.1)

Branch Info (BI)

Input
corpus

Test Case 
Validator
(§3.2.2)

Test Cases

(TC)

Validated Test Cases (TC’) + Updated Map (M’) + TI∅/saturated?

New Test Inputs

Structure-aware Constraint Selection LLM-driven Constraint Solving

Test
Program

Structural Instrumentation

History-guided Seed Acquisition

Coverage Map (M)

LLM-driven Concolic Execution Engine

Yes
No

Path Constraints (PCs)
Test Input (TI)

Coverage map

Test Input (TI)

TI+ M’

TI + PCs + MTI + PCs
M’

BI + TI (+M’)

History Coverage
(HC)

M’

LLM-driven Seed
Generator (§3.3.2)

Coverage-guided
Constraint Selector

(§3.1.3)

M

Binary execution

History Coverage
Recorder (§3.3.1)

Saturated?

Figure 3. High-level design of COTTONTAIL concolic execution engine

cases. After running the new test cases with four target
programs, we found that numerous test cases (85.3% to
99.9%, as shown in Figure 1) are syntactically invalid and
cannot pass the parser checking logic. This is reasonable
as existing solvers only solve constraints for satisfiability
while ignoring the guarantee of syntactic validity of the
solution by design. Also, the size of the resulting solution
is fixed, restricting the diversity of generated test cases. For
example, given a path constraint “bvsge #x00000039 (con-
cat #x000000 k!95)” (where ‘k!95’ is a symbolic variable,
collected from parsing implementation in Figure 4) which
requires the value of the symbol ‘k!95’ to be large or equal
to ASCII 0x39 (i.e., char ‘9’). Z3 simply solves it to ‘9’
and keeps the remaining string unchanged with fixed size
as seed input, producing an invalid JavaScript string ‘r9turn
...’. This fact indicates that the test cases generated by
existing concolic executors can hardly examine the deeper
code regions (e.g., the application logic), significantly hin-
dering the effectiveness of concolic testing. In summary,
such a limitation motivates us to investigate the following
question: How to solve the constraints smartly, i.e., solving
constraints for both satisfiability and syntactic validity as
well as making the resulting solutions with flexible sizes?

To answer the question, we design a new LLM-driven
constraint solver based on Solve-Complete paradigm as
shown in Figure 2. The idea behind it is simple but effective.
Given a path constraint and the marked (two types of marks
help Solve-Complete paradigm) seed input string as a user
prompt, LLMs are prompted to smartly solve the given con-
straint within two consecutive steps. In step (1), LLMs are
asked to solve the constraint and use the solution to replace
the Constraint Mask ‘[k!n]’, where the solution is syntax-
aware, that is, supposed not only to meet the satisfiability
but also possibly comply with the input syntax validity.
In step (2), LLMs are required to complete the Flexible
Mask ‘[xxx]’ with a flexible size string which makes the
whole resulting string remain valid. Taking the same path
constraint includes ‘k!95’ again, our solver solves it to ‘e’,
which can be connected with a remaining string (e.g., ‘turn’)
to form a syntactically valid JavaScript string (as shown
in the LLM’s response). To demonstrate the effectiveness
of the LLM-driven solver, we used it to solve the same
path constraints solved by Z3, and the results presented

in Figure 1 show significant improvements (100x more)
in terms of the parser checking pass rate across various
formats, practically helping achieve significant improvement
in terms of code coverage.

3. Design of COTTONTAIL

Overview. Figure 3 presents the high-level design of
COTTONTAIL. Given a test program, COTTONTAIL en-
hances instrumentation by collecting branch information at
compile-time and constructs a new program path represen-
tation called Expressive Coverage Tree (ECT) at runtime to
assist in structure-aware constraint selection (§3.1). Later,
COTTONTAIL leverages LLM-driven constraint solving with
Solve-Complete paradigm to solve constraints smartly and
refine the non-robust results from LLMs (§3.2). Finally, if
there are no initial seed inputs to set up testing or whenever
the testing process gets saturated, COTTONTAIL adopts a
history-guided seed acquisition to obtain high-quality seed
inputs continuously (§3.3).

3.1. Structure-aware Constraint Selection

This subsection explains why a new path constraint
selection strategy is needed and details how we construct
a new coverage map to guide the structure-aware selection.

3.1.1. Why Structure-aware Selection. To perform a prac-
tical concolic execution over parsing test programs, we argue
that an effective selection should be structure-aware, which:
#1 provides a meaningful (e.g., includes semantic infor-

mation) and complete representation of program paths;
#2 records human-readable coverage information;
#3 excludes redundant structure-agnostic path constraints;
#4 has less chance of missing interesting coverage.

Satisfying requirement #1 helps users to have a better
understanding of structural paths, #2 is essential to help
craft useful inputs either by humans or LLMs at runtime
when the testing gets saturated. Compared with branch
information from binary code (which contains less seman-
tic information), a human-readable coverage could provide
clear and interpretable insights into which branches have

4



1 // Parsing logic /* jslex . c */
2 static int jsY_isidentifierpart(int c) {
3 return isdigit(c) //‘‘bvsge #x00000039 (concat #x000000 k!95)’’
4 || isalpha(c) || c == ’$’ ||c == ’_’ ||isalpharune(c);
5 }
6 static int jsY_lexx(js_State *J){
7 while (1) {
8 // ...
9 switch (J->lexchar) {

10 case ’(’: jsY_next(J); return ’(’;
11 case ’)’: jsY_next(J); return ’)’;
12 case ’,’: jsY_next(J); return ’,’;
13 // ...
14 }
15 // ...
16 }
17 }

Figure 4. Sample parsing implementation code from MuJS

been covered and what direction to create new test cases.
#3 and #4 together guarantee a better trade-off between
testing effectiveness and efficiency. There are three existing
strategies to handle the path constraint selection for the
general software systems, which are exhaustive search, the
Bitmap-based approach [1], and the CSTG-based approach
[3], yet they do not comply with all the requirements when
handling parsing test programs. Justified by the above facts,
it thus calls for a new path constraint selection that could
satisfy all four requirements. In the following subsections,
we detail the structural instrumentation and human-readable
Expressive Coverage Tree (ECT) to meet requirements #1
and #2, and the ECT-guided path constraint selector to
comply with requirements #3 and #4.

3.1.2. Structural Instrumentation. Compilation-based
concolic execution has shown promising performance
in execution speed compared with IR (Intermediate
Representation)-based execution, but it inevitably misses
many interesting behaviors of the test programs due to the
loss of semantics information after compilation [1], [2]. To
alleviate this issue, we propose to use extra instrumentation
on the IR code to collect necessary branch information. It is
worth noting that such instrumentation is crucial for captur-
ing meaningful structural information, particularly around
complex branch conditional constraints. This is because it
allows developers and analysis tools to observe precisely
which paths of the code are being exercised at runtime.
Without such instrumentation, it can be difficult to determine
whether certain cases or branches within a switch statement
are triggered, leading to potential blind spots in testing.
To comprehensively cover structural program paths, we
design a branch information collector to capture all pos-
sible structural paths during instrumentation. To be specific,
our structural instrumentation systematically walks through
every instruction in a given function, looking for branch
instructions such as switch. When it encounters a branch,
it records the branch name and its associated case values.
Such metadata is then added to a global map that associates
each branch statement with its case values. Finally, the
instrumentation phase saves all gathered information into
a JSON file, enabling further analysis of the function’s
branching structures and program semantics.

3.1.3. Expressive Coverage Tree Maintainer. After col-
lecting branch information, we introduce a new Expressive
Coverage Tree (ECT) to help have a comprehensive repre-
sentation of structural program paths.

We define ECT as a hierarchical tree structure repre-
sented by a pair T = (N,E), where:
• N is a set of nodes, containing a special root node.
• E ⊆ N ×N is a set of edges that define parent-child re-

lationships, representing the call context (caller to callee)
or branch information (condition to nested statement).
Each node n ∈ N may have zero or multiple child nodes

connected by edges. Nodes without children are called leaf
nodes; nodes with children are referred to as internal nodes.
Each node name is a unique identifier:

fileName_funcName_lineNum_colNum_brType_brId
which consists of several important attributes to represent a
unique branch or differentiate between different branches.
Those attributes include visiting status (taken or untaken),
visit count (visit_cnt), branch type (brType), call stack size,
and branch id (brId) — in if statement, it refers to 0 (then
branch) or 1 (else branch); in switch-case statement, it
represents the constant case value. With the help of the
expressive coverage map, users can easily understand the
testing process by checking the statistics in the global map.

{
"loc": "jslex.c_jsY_lexx_9_3_switch", "tp": 1, "tk": 1,

"cs": 10, "vc": 1, "br": -1,
"ch": [
{ "loc": "jslex.c_jsY_lexx_9_3_switch_40",

"tp": 1, "tk": 1, "cs": 10, "vc": 1, "br": 40 },
{ "loc": "jslex.c_jsY_lexx_9_3_switch_41",

"tp": 1, "tk": 1, "cs": 10, "vc": 1, "br": 41 },
{ "loc": "jslex.c_jsY_lexx_9_3_switch_44",

"tp": 1, "tk": 1, "cs": 10, "vc": 1, "br": 44 }
]

}

Figure 5. Partial expressive coverage tree (ECT) recording the program
paths between Lines 9-12 in Figure 4 in JSON format (loc: source code
location; ch: children; tp: branch type (0 for if statement and 1 for switch
statement); tk: taken; cs: call stack size; vc: visited count; br: branch id).

To provide a clearer understanding of the ECT used in
COTTONTAIL, Figure 5 presents a partial ECT that captures
the coverage information of the switch statement with three
children in Figure 4 at Line 9. Once the function jsY_lexx
is analyzed, the ECT of the program in JSON format is
recorded in the global coverage map. It is worth noting
that the ECT differs from existing code coverage trees
(e.g., CSTG from Marco [3]) or maps (e.g., the bitmap
from SymCC [1]): It is partially context-sensitive and path
sensitive, capturing not only branch coverage information
but also call stack information. Furthermore, since our
representation is based on source code instead of binary
code, we can avoid the loss of interesting path coverage
or semantic information (e.g., detailed switch-case branches
to store structured information) due to hash collision or
source code compilation. In short, we provide a precise
representation of code coverage that enables the distinction
of different execution contexts for the same branch, thereby

5



1 (vsge #x00000039 (concat #x000000 k!0)
2 (vsge #x00000039 (concat #x000000 k!1))
3 ....
4 (vsge #x00000039 (concat #x000000 k!95))

Figure 6. Duplicated path constraints in parsing logic (those path constraints
aim to cover the same branch at Line 3 in Figure 4)

facilitating systematic exploration of the input space and
advancing automated test generation.

After defining ECT, we manage and update a global
coverage tree to help guide the constraint selection. Thus,
COTTONTAIL is able to reduce redundant coverage but avoid
losing promising code coverage.

3.1.4. ECT-guided Constraint Selector. The selector con-
sists of two phases of reduction: reducing redundant con-
straints that do not increase coverage during single concolic
execution, and reducing constraints across different runs that
have less chance to boost code coverage.

First Phase Reduction. As aforementioned in Figure 4, in
a single concolic execution, it is common that the redun-
dant path constraints are collected when each input byte is
repeatedly analyzed by a parsing function. Therefore, we
need to remove such duplicated path constraints. To do so,
we maintain a global branch recorder to record branch-
constraint mappings during a single concolic execution.
Since each element in the record is a unique branch identifier
that records the context of the branch. When a branch is
encountered and already exists in the recorder, we compare
the current constraints and the constraints stored in the
branch. If the constraints are only different in the symbolic
index (i.e., each byte represented as ‘k!n’ in path constraints,
where ‘n’ indicates the index over the input bytes), as shown
in Figure 6, we reduce a duplicate set of path constraints
and only keep unique branches.

Note that such a constraint deduplication mechanism
preserves the soundness of concolic execution by excluding
only redundant path constraints that arise from structurally
identical branches applied repeatedly across input positions
(also demonstrated in first phase selection in Table 3).

Second Phase Reduction. Different from the first phase, in
the second phase, we remove redundant path constraints
based on the newly built coverage tree across different
runs. An important problem to handle is how we remove
path constraints without affecting the overall performance
(i.e., missing potential interesting code coverage). Simply
excluding the branches that have been explored tends to
miss much interesting coverage, as such a strategy does
not have a chance to examine the remaining execution of
the current test case or the remaining test cases to make
a globally optimal decision [3]. Therefore, we need to be
careful when making the selection decision. Inspired by
prior work, such as KLEE [32] and Mayhem [15], [33],
we consider factors including untaken branches, frequency
of visits, and depth of execution to balance exploration
potential and redundancy, as each coefficient has been shown
to contribute to uncovering previously unexplored paths.

Algorithm 1: Test Case Validator
Input: a path constraint pc, a branch br, a test input

from LLM input, the coverage tree g_tree
Output: original test input intput or refined test input

input’, updated global tree g_tree’
1 Function TestCaseVal(pc, br, input, g_tree):
2 res_eva = evalauteConstraint(pc, input)
3 if res_eva == True then
4 updateGlobalTree(g_tree, br)
5 return input, g_tree’

6 else
7 solution = getSolution (pc)
8 input’ = refineTestCase (solution, input)
9 updateGlobalTree(g_tree, br)

10 return input’, g_tree’

Thus, we propose a new metric node weight to quantify
selection priority, defined as follows:

Nodeweight = α · untaken+ β · visit_cnt+ γ · depth (1)

The untaken, visit_cnt, and depth are node attributes,
and α, β, and γ are three parameters to optimize explo-
ration for maximum program coverage. α prioritizes un-
taken branches, ensuring the discovery of new execution
paths and highlighting untested code regions. β focuses
on rarely visited nodes, balancing exploration by avoiding
overemphasis on frequently traversed paths while paying
attention to less common scenarios. γ rewards deeper nodes,
encouraging exploration of complex execution paths and
uncovering deeply nested bugs or vulnerabilities. Together,
these parameters enable a balanced trade-off that drives
efficient and thorough program testing.

3.2. Smart LLM-driven Constraint Solving

This subsection introduces our Solve-Compete paradigm
to smartly solve path constraints and a new test case valida-
tor to refine the unreliable results produced by LLMs.

3.2.1. LLM-driven Constraint Solver. It is important to
give a precise and logical prompt if we intend to receive
output feedback from LLMs (we show that normal prompts
generate worse results in §5.2). We design a Solve-Complete
paradigm that utilizes the CoT prompt mechanism. Using
CoT prompts instead of normal prompts is advantageous
for tasks requiring complex reasoning or multistep problem-
solving. CoT prompts guide the model to think step-by-
step, improving accuracy by reducing errors that arise from
skipping intermediate steps. It also enhances transparency
by explicitly laying out the reasoning process, making it
easier to verify the logic and correctness of the solution.
In summary, the systematic reasoning makes CoT prompts
ideal for tackling constraint-solving tasks.

The earlier Figure 2 illustrates a smart constraint-solving
strategy grounded in a Solve-Complete paradigm, where
the LLM is asked first to satisfy path constraints and then

6



complete the output to preserve syntactic correctness. This
process is decomposed into two stages: (1) resolving the
Constraint Mask (‘[k!n]’) (e.g., ‘k!95’) using a syntax-aware
way by synthesizing a character ‘e’ that satisfies the path
constraint under ASCII semantics, and (2) completing the
surrounding code such that the entire string remains valid
JavaScript to fill the Flexible Mask (‘[xxx]’) with a flexible
size. This dual-stage approach mirrors classical symbolic ex-
ecution techniques, but is uniquely enhanced by the LLM’s
ability to generate structurally and contextually coherent
test inputs. In contrast to traditional program synthesis
pipelines, which often treat constraint solving and code com-
pletion as decoupled steps, this strategy tightly integrates
reasoning with generative synthesis. The mechanism also
aligns with tasks like code infilling, notably benchmarked
in CodeXGLUE [8], where models are expected to fill
in masked code spans while preserving functional correct-
ness. However, unlike pure statistical infilling, our approach
exhibits explicit constraint awareness, solving constraints
before code generation, highlighting the potential of LLMs
to unify symbolic reasoning with syntax-preserving code
completion. In summary, the systematic reasoning capability
of the Solve-Compete paradigm unlocks new applications in
symbolic execution for structured test input generation.

3.2.2. Test Case Validator. There is a known issue that
LLMs can not reliably generate expected output and can
have hallucinations [27], [34]. Random output might be
acceptable for black/grey box fuzzing, as they do not re-
quire the robust (i.e., new test inputs will cover new code
coverage) results during each iteration. However, for a con-
colic execution, robustness is one of the essential features
that should be guaranteed. Therefore, we need to handle
unreliable results produced from GPT to ensure it follows
the soundness guarantee of traditional concolic execution
and updates the global ECT precisely.

Algorithm 1 presents the workflow of the test case
validator, which validates or refines test inputs generated
by LLMs. The algorithm takes as input a path constraint
pc, a branch br, the test input (input) produced by LLMs,
and the global coverage tree (g_tree). It first evaluates
whether the input satisfies the path constraint using the
function evaluateConstraint (Line 2). If the con-
straint is satisfied, i.e., the returned boolean flag res_eva
is True, the branch br is updated in the global tree using
updateGlobalTree (Line 9), and the algorithm out-
puts the original test input (input) alongside the updated
tree. If the constraint is not satisfied, a solution for the
path constraint is computed using getSolution (Line
7), and a refined test input (input’) is generated through
function refineTestCase (Line 8). Finally, the updated
tree (g_tree’) is returned along with the refined input. In
summary, this algorithm ensures the validity of test cases
and updates the global coverage to improve test coverage.

In particular, in refineTestCase function, we re-
place the unreliable solution generated by LLM with the
correct solution generated by a traditional solver. By such,
even though LLMs produce unreliable outputs, COTTON-

SMU Classification: Restricted
Normal

</> System Prompt (with Chain of Thought)
You are a knowledgeable structural Seed Generator for JavaScript strings. You will be asked to generate
new seed inputs before testing or during testing. During testing, given <test input, coverage history> map
and uncovered branches, please generate a new seed step by step: 

1. Compare the covered and uncovered branches.
- Group by source location and identify where alternative branches exist.

2. Analyze input string and infer which byte(s) most likely influenced the decision at relevant locations.
- Use the difference between branch IDs as clues to infer.

3. Randomly select one of the options to generate a new input based on above analysis.
- Option 1: Generate new seed by modifying test inputs from history to explore uncovered branches.
- Option 2: Generate a fresh input from bug repository to explore uncovered features.

4. Ensure final output is enclosed with ```. 

</> User Prompt (before testing)
Please generate a high-quality JavaScript seed input (e.g., code samples from bug repositories) to start 
testing. The goal is to help cover as much as code coverage and detect new vulnerabilities.

</> User Prompt (during testing)
Given the historical coverage map ```[test1-cov1, test2-cov2 …]``` and untaken branches
```[branch1,branch2 …]```, please generate a new seed input.

Seed Generation prompt

Figure 7. Chain of Thought (CoT) prompts for LLM-driven seed generation

TAIL could fix them and refine them to the same output as
the ones generated by traditional solvers.

3.3. History-guided Seed Acquisition

In this subsection, we detail the strategy to generate
initial seeds before testing or alleviate the saturation issue
during testing, including the history coverage recorder and
the history-driven seed generator. Since the key contribu-
tions lie in the generation during testing, we detail the
history coverage recorder first in the following.

3.3.1. History Coverage Recorder. It is important to trace
the testing history to know which branches can be covered
by what test inputs and which are the uncovered branches
remaining uncovered. By investigating the connection be-
tween test input and its covered branches, we could not only
understand the underlying processing logic of test programs
but also highlight what missing features are within the test
inputs. To practically collect the history information, we
continue to leverage the benefits of the informative coverage
map (i.e., ECT) to get the covered or uncovered branches.

After collecting history coverage mappings and extract-
ing branch information from the global coverage map, we
then use this information to construct CoT prompts for fresh
seed generation during testing.

3.3.2. LLM-driven Seed Generator. The generator is in-
voked based on two different timings: initial seed acquisition
before testing and fresh seed acquisition during testing.
Initial Seed Acquisition. If there are no interesting seed
inputs to set up testing, we define a prompt that helps
generate high-quality structured seed inputs. Since LLMs
were trained via tons of code and resources and inspired by
many existing studies [29], [30], it is reasonable that LLMs
have expert knowledge of what kinds of code have triggered
vulnerabilities in bug repositories. Thus, we directly prompt
LLMs to generate high-quality structured test inputs from
existing bug repositories. By such, no manual work will be
required to collect historical buggy code examples.
Fresh Seed Acquisition. During testing, if there is no in-
teresting coverage increase (i.e., saturated) after a timeout

7

Figure 8. Examples of LLM responses of history-guided seed generation

(i.e., three minutes), by check the coverage (collected from
external tool gcov) at runtime. It is straightforward to apply
the same strategy used in seed generation to get a fresh seed,
but it is ineffective (demonstrated in §5.2). To make it more
effective, we design a creative generation solution using
CoT (Chain of Thought) prompts to effectively explore the
unexplored branches/features during testing. Such a design
is inspired by an interesting behavior investigated by prior
studies, i.e., a better name can help LLMs better understand
the program semantics [12], [35].

Figure 7 illustrates the prompts designed to guide a seed
generator for JavaScript in creative generation of seed
inputs for different timings. In particular, the CoT workflow
guides an LLM to generate new JavaScript seed input
through a structured multi-step reasoning process during
testing. First, the LLM compares covered and uncovered
branches, groups them by source location, and identifies
divergent execution points. Then, it analyzes input bytes
likely responsible for branching decisions using its internal
inferring capacities. Finally, it synthesizes new inputs either
by mutating existing test cases to explore specific branches
or by drawing from existing bug repositories.

Examples of LLM-driven Seed Generation. To have a
better understanding of how history-guided seed acquisition
works, we provide two illustrative examples in Figure 8 to
articulate the seed generation process (for simplicity, only
a reduced version is presented). In principle, COTTONTAIL
learns from historical coverage and generates new seeds in
two ways: 1) mutating historical test inputs; 2) generating
new seeds (or test inputs) from scratch.

In the first response shown in Figure 8, COTTONTAIL
generates a new test input by mutating a historical test input

that has been executed before. The historical test input is
shown in the prompt, and COTTONTAIL asks the LLM to
generate a new test input by making some changes to it. The
generated test input is similar to the original but contains
differences that may lead to the exploration of new program
paths. This strategy is effective because mutating existing
test inputs leverages prior knowledge to produce new inputs
that are both likely to be valid and potentially interesting.

In the second response, COTTONTAIL generates a new
test input from scratch by leveraging the naming conventions
used in the target program’s implementation. This choice
is motivated by the expectation that good programmers
typically employ meaningful and consistent naming patterns
for the intentions of functions [36]–[38]. Moreover, recent
studies show that LLMs can utilize such identifier informa-
tion to assist code analysis [12], [39].

Note that the generated seeds may not always satisfy the
requirements for covering the untaken branches. Instead, we
expect them to provide useful hints that guide the explo-
ration of the input space, thereby increasing the likelihood
of generating a test input that can trigger those branches. If
a new seed fails to cover the target branches, COTTONTAIL
will quickly discard it guided by the ECT.

4. Implementation

We implemented COTTONTAIL on top of SYMCC (com-
mit version 65a3633). The newly designed components
structural instrumentation and coverage-guided path con-
straints selection (§3.1) are implemented as separated func-
tions using C++. The remaining LLM-driven constraint
solving (§3.2) and history-guided seed acquisition (§3.3) are
implemented in Python code. The running script is set up
using Python 3.9. For the setting of different parameters
α, β, and γ used in Equation 1, we run extra experiments
and opt for one setting that has a better trade-off between
efficiency and effectiveness, which is 1.0, 3.0, and 0.8,
respectively. We used gpt-4o (only in Setting 1 in RQ1)
and gpt-4o-mini as our base LLMs and invoked their
Python APIs to communicate with the model. The tempera-
ture of the model is set to 0 for better reproducibility. Note
that an LLM with better reasoning capabilities (or higher
cost) is preferred but not required. Our extra experiments
show that other recently released cost-effective models (i.e.,
deepseek-v3 and gpt-4.1-nano) can work very well
compared with higher cost models such as gpt-4o.

5. Evaluation

To evaluate the effectiveness of COTTONTAIL, we aim
to investigate the following research questions (RQs):
• RQ1: How does COTTONTAIL perform compared with

state-of-the-art concolic execution approaches?
• RQ2: Can each component contribute to COTTONTAIL?
• RQ3: Can COTTONTAIL find new vulnerabilities?

Among these RQs, RQ1 focuses on demonstrating the
effectiveness of COTTONTAIL compared with state-of-the-
art approaches and investigating whether COTTONTAIL is

8

TABLE 1. OPEN SOURCE LIBRARIES CROSS FOUR DIFFERENT FORMATS
USED IN EVALUATION (LOC: LINES OF CODE; STARS: GITHUB STARS)

Libraries Format Version LOC Stars

Libxml2 XML 2.13.5 80.0k 0.6k
Libexpat XML 2.6.4 14.6k 1.1k
SQLite SQL 3.47.0 81.3k 7.0k
UnQLite SQL 1.1.9 22.5k 2.1k

MuJS JavaScript 1.3.5 10.0k 0.8k
QuickJS JavaScript 0.7.0 46.4k 1.2k
JSON-C JSON 0.18 4.7k 3.0k
Jansson JSON 2.14 5.8k 3.1k

superior to them. RQ2 conducts comprehensive ablation
studies to analyze the significance of individual components
or key features within COTTONTAIL. RQ3 assesses the
practical vulnerability detection capability of COTTONTAIL.

All experiments were run on a Linux PC with Intel(R)
Xeon(R) W-2133 CPU @ 3.60GHz x 12 processors and
64GB RAM running Ubuntu 18.04 operating system.
Benchmarks. Table 1 presents eight widely tested open-
source libraries used for evaluation, including libraries
for XML (Libxml2/Libexpat), SQL (SQLite/UnQLite),
JavaScript (MuJS/QuickJS), and JSON (JSON-
C/Jansson), varying in size and popularity. This diverse set
of libraries covers a broad range of formats, codebases,
and community adoption levels, making it a comprehensive
benchmark suite for evaluation.

5.1. RQ1: Comparison with Baseline Approaches

Comparative Approaches. The following state-of-the-art
concolic execution approaches are compared:
• SYMCC [1]: the tool COTTONTAIL built on top of (enable

the Bitmap-guided path constraints selection by default).
• SYMCC(¬MAP): a variant approach of SYMCC that se-

lects all newly generated path constraints.
• MARCO [3]: a recent concolic execution engine that

constructs CTSG to select path constraints.
• MARCO(MC): A variant of MARCO that adopts Markov

Chain modeling in CSTG.
• MARCO(CFG): A variant of MARCO that applies the

CFG-directed searching algorithm in CSTG.
We select SYMCC and SYMCC(¬MAP) as we built

COTTONTAIL on SYMCC. MARCO is an approach proposed
recently, and its experiments show that the two variant
approaches (i.e., MARCO(CFG) and MARCO(MC)) could
outperform MARCO in a few cases, so we also include them.
Running Settings. We design three distinct settings to com-
prehensively demonstrate the superiority of COTTONTAIL.
• Setting 1: We run each approach with a timeout of 1 hour.
• Setting 2: We run COTTONTAIL with a timeout of 1 hour

and other approaches with a timeout of 12 hours.
• Setting 3: We set a 12-hour timeout for each approach.

We selected a timeout of 1 hour in Settings 1 and 2
for two reasons. First, we found that COTTONTAIL not only

0 10 20 30 40 50 60 70

Libxml2

Libexpat

SQLite

UnQLite

MuJS

QuickJS

JSON-C

Jansson

32.61%

35.45%

31.49%

61.54%

9.59%

11.84%

40.28%

25.48%

4.74%

3.76%

9.73%

40.00%

3.76%

0.07%

3.14%

3.80%

13.90%

10.13%

2.59%

0.61%

0.48%

0.11%

24.99%

11.10%

Cottontail

SymCC

Marco

Figure 9. Comparison results of parser checking passing rate (% in y-axis)
against SYMCC and MARCO

significantly improves the baseline approaches within one
hour, but the results of running our approach for only 1
hour can even beat the baselines running for 12 hours on
average. Second, as suggested by prior studies [40], [41] and
our experimental results in Setting 3, while having longer
testing campaigns can boost the effectiveness, we found that
the gain when increasing the time budget after 1 hour is
overall relatively poor. We run with a longer running time
in Setting 3, as this could help us understand when the
testing gets saturated and justify the need for a new seed
generation strategy. COTTONTAIL outperforms baselines in
all three settings on average, but due to the page limit, we
only report detailed results of Setting 1 in RQ1 and leave
other results in the Appendix.

To further conduct a fair comparison, we use the seeds
from MARCO and launch each tool with the same seeds
for all settings. To help detect possible program issues,
we compile the target program built with AddressSan
[42] and use it as a test oracle to detect memory issues.
In particular, although COTTONTAIL does not require pre-
collected seed inputs to set up, for a fair comparison, we
disable the seed acquisition contribution in COTTONTAIL.
To clarify, the description of COTTONTAIL in this sub-
section refers to COTTONTAIL(INIT+¬SGEN), the variant
version of COTTONTAIL where the same initial seeds as the
baselines are used and without new seed generation (please
check different versions of COTTONTAIL in §5.2). To reduce
the threats from randomness, we repeated running them five
times and reported the median results.

Metrics. We use code coverage, including line and branch
coverage measured by the external tool gcovr to compare
the effectiveness of comparative approaches.

Results. Table 2 provides a comprehensive comparison re-
sults achieved by comparative approaches. Notably, COT-
TONTAIL significantly achieves a superior code coverage on
average, from 20.77% to 38.16% (30.73% on average and
up to 99.65% improvement over QuickJS) in terms of line
coverage and 25.56% to 57.70% (41.32% on average and
up to 175.88% over Libexpat) in terms of branch coverage
against comparative approaches, yielding up to 12k more
lines and 9k more branches in total. Note that the very recent
approach MARCO can only achieve 13% code coverage than

9

https://github.com/GNOME/libxml2
https://github.com/libexpat/libexpat
https://github.com/sqlite/sqlite
https://github.com/symisc/unqlite
https://github.com/ccxvii/mujs
https://github.com/quickjs-ng/quickjs
https://github.com/json-c/json-c
https://github.com/akheron/jansson

TABLE 2. LINE AND BRANCH COVERAGE COMPARISON RESULTS AGAINST EXISTING CONCOLIC EXECUTION ENGINES SYMCC [1] AND MARCO [3]
TABLE 2. LINE AND BRANCH COVERAGE COMPARISON RESULTS AGAINST EXISTING CONCOLIC EXECUTION ENGINES SYMCC [1] AND MARCO [3]

Fomat Libraries SYMCC SYMCC(¬MAP) MARCO MARCO(MC) MARCO(CFG) COTTONTAIL

Line Branch Line Branch Line Branch Line Branch Line Branch Line Branch

XML Libxml2 3,917 2,693 3,917 2,667 5,252 3,790 4,197 3,027 4,170 3,013 5,298 3,848
Libexpat 2,379 1,250 2,430 1,465 1,902 1,271 1,861 1,165 1,569 680 2,838 1,876

SQL SQLite 17,143 10,827 16,157 10,048 11,768 7,229 11,696 7,148 12,105 7,383 18,708 11,849
UnQLite 2,927 1,503 3,123 1,619 3,087 1,629 3,062 1,677 3,230 1,720 3,257 1,749

JavaScript MuJS 3,669 1,815 3,573 1,703 2,947 1,588 2,857 1,464 2,634 1,184 4,120 2,070
QuickJS 5,890 2,389 4,971 1,829 6,756 2,912 6,337 2,686 5,748 2,251 9,414 4,266

JSON JSON-C 968 568 904 488 990 637 867 527 886 547 1,040 686
Jansson 1,021 578 571 295 1,084 650 1,089 657 1,092 659 1,140 699

Amount 37,914 21,623 35,646 20,114 33,886 19,706 31,966 18,351 31,434 17,437 45,815 27,043
Impr. (num) +7,901 +5,420 +10,169 +6,929 +12,029 +7,337 +13,849 +8,692 +14,381 +9,606 - -
Impr. (%) 20.77% 31.64% 36.44% 53.83% 25.44% 26.56% 32.81% 36.87% 38.16% 57.70% - -

0 10 20 30 40 50 60 70

Libxml2

Libexpat

SQLite

UnQLite

MuJS

QuickJS

JSON-C

Jansson

32.61%

35.45%

31.49%

61.54%

9.59%

11.84%

40.28%

25.48%

4.74%

3.76%

9.73%

40.00%

3.76%

0.07%

3.14%

3.80%

13.90%

10.13%

2.59%

0.61%

0.48%

0.11%

24.99%

11.10%

Cottontail

SymCC

Marco

Figure 7. Comparison results of parser checking passing rate (% in y-axis)
against SYMCC and MARCO

Benchmarks. Table 1 presents eight widely tested open-
source libraries used for evaluation, including libraries
for XML (Libxml2/Libexpat), SQL (SQLite/UnQLite),
JavaScript (MuJS/QuickJS), and JSON (JSON-
C/Jansson), varying in size and popularity. This diverse set
of libraries covers a broad range of formats, codebases,
and community adoption levels, making it a comprehensive
benchmark suite for evaluation.

5.1. RQ1: Comparison with Baseline Approaches

Comparative Approaches. The following state-of-the-art
concolic execution approaches are compared:
• SYMCC [1]: the tool COTTONTAIL built on top of (enable

the Bitmap-guided path constraints selection by default).
• SYMCC(¬MAP): a variant approach of SYMCC that se-

lects all newly generated path constraints.
• MARCO [3]: a recent concolic execution engine that

constructs CTSG to select path constraints.
• MARCO(MC): A variant of MARCO that adopts Markov

Chain modeling in CSTG.
• MARCO(CFG): A variant of MARCO that applies the

CFG-directed searching algorithm in CSTG.
We select SYMCC and SYMCC(¬MAP) as we built

COTTONTAIL on SYMCC. MARCO is an approach proposed
recently, and their experiments show that the two variant
approaches (i.e., MARCO(CFG) and MARCO(MC)) could
outperform MARCO in a few cases, so we also include them.
Running Settings. To have a comprehensive evaluation,
we design three different settings to run comparative ap-
proaches.

• Setting 1: We run each approach with a timeout of 1 hour.
• Setting 2: We run COTTONTAIL with a timeout of 1 hour

and other approaches with a timeout of 12 hours.
• Setting 3: We set a 12-hour timeout for each approach.

We selected a timeout of 1 hour in Settings 1 and 2 for
two reasons. First, we found that COTTONTAIL significantly
improves the baseline approaches within one hour, and the
results of running COTTONTAIL for only 1 hour can beat
the baseline approaches running for 12 hours. Second, as
suggested by existing studies [29], [30] and our experimental
results in Setting 3, while having longer testing campaigns
can boost the effectiveness, we found that the gain when
increasing the time budget after 1 hour is overall relatively
poor. Also, with longer running time in Setting 3, we could
understand when the testing gets saturated and justify the
need for a new seed generation strategy. To reduce the
threats from randomness, we repeated running them five
times and reported the median results.

To further conduct a fair comparison, we use the seeds
from MARCO and launch each tool with the same seeds
for all settings. To help detect possible program issues,
we compile the target program built with AddressSan
[31] and use it as a test oracle to detect memory issues.
In particular, although COTTONTAIL does not require pre-
collected seed inputs to set up, for a fair comparison, we
disable the seed acquisition contribution in COTTONTAIL.
To clarify, the description of COTTONTAIL in this sub-
section refers to COTTONTAIL(INIT+¬SGEN), the variant
version of COTTONTAIL where the same initial seeds as the
baselines are used and without new seed generation (please
check different versions of COTTONTAIL in §.5.2).
Metrics. We use code coverage, including line and branch
coverage measured by the external tool gcovr to compare
the effectiveness of comparative approaches.
Results. Table 2 provides a comprehensive comparison re-
sults achieved by comparative approaches. Notably, COT-
TONTAIL significantly achieves a superior code coverage on
average, from 20.77% to 38.16% (30.73% on average and
up to 99.65% improvement over QuickJS) in terms of line
coverage and 25.56% to 57.70% (41.32% on average and
up to 175.88% over Libexpat) in terms of branch coverage
against comparative approaches, yielding up to 12k more

8

baseline approaches. Furthermore, in both Settings 2 and
Setting 3, COTTONTAIL consistently outperforms all com-
parative approaches on average, demonstrating the stronger
capabilities on code coverage.

To have a better understanding of why COTTONTAIL is
superior, we further analyze the validity of generated test
cases among SYMCC, MARCO, and COTTONTAIL. Since
SYMCC and MARCO produced millions of test cases in
12 hours, we ran them in another 1-hour setting for the
same running time. Figure 9 presents a detailed compar-
ative analysis of parser checking passing rates for three
comparative tools. From the figure, we can observe that
COTTONTAIL consistently performs better in several critical
libraries: it achieves a significant 32.61% passing rate in
Libxml2, yielding 588% higher rate than SYMCC’s 4.74%
and 140% higher rate than MARCO’s 13.90%. The overall
results suggest that the increased number of valid test inputs
helps yield better code coverage results.

Answer to RQ1: COTTONTAIL significantly improves
the state-of-the-art approaches in terms of line/branch
coverage on average in all three running settings,
demonstrating the effectiveness of COTTONTAIL in
generating highly structured test inputs.

5.2. RQ2: Ablation Studies

This subsection presents the methodologies to evaluate
the impact of the newly designed components.
RQ2.1: How effective is the ECT-guided path constraint
selection? As mentioned in §3.1.4, we design two phases
to remove redundant path constraints across single concolic
execution and in-between runs. We here evaluate how many
path constraints were filtered out in the two phases (e.g.,
single or in-between concolic execution), comparing with
existing selection strategies (i.e., select all without map
Nomap and guided by Bitmap).

To do so, we run the seed input and terminate it after the
first iteration is done to evaluate the effectiveness in the first
phase. Then, we run the seed input within two iterations to
evaluate the effectiveness of the in-between runs. Finally, we

count the total number of path constraints and code coverage
achieved by different selection strategies in the two phases.

The results in Table 3 demonstrate the effectiveness
of ECT in guiding path constraint selection across both
testing phases. In the first phase, ECT significantly reduces
the number of collected path constraints compared to both
NoMap and Bitmap (e.g., 67 vs. 223 and 106 in JSON-
C; 137 vs. 401 and 191 in SQLite), while maintaining
identical line coverage, indicating that ECT effectively filters
redundant constraints without sacrificing exploration. In the
second phase, ECT continues to show a substantial reduction
in the number of path constraints relative to NoMap (e.g.,
926 vs. 7,024 in JSON-C; 687 vs. 3,618 in SQLite), yet
it retains more path constraints than Bitmap, enabling it
to achieve better coverage than Bitmap and comparable
or even slightly improved coverage over NoMap in most
benchmarks. These results highlight ECT’s superiority in
balancing structure-aware constraint selection. The superior-
ity is reasonable as AFL’s Bitmap tends to miss interesting
coverage due to hash collisions, limited granularity, and lack
of path sensitivity, all of which cause distinct behaviors to
appear identical, reducing fuzzing effectiveness [43], [44],
while using Nomap will lead to inefficient testing. Note
that the size of ECT depends on the complexity of the
test programs. For example, the size is about 58.3KB for
JSON-C after 12 hours of running.

RQ2.2: How effective are the CoT prompts in Solve-
Complete paradigm? We have shown the superior per-
formance of LLM-driven constraint solving in Figure 1.
To better understand the benefits of the CoT prompt, we
compare COTTONTAIL with COTTONTAIL(NORMPRO), a
variant of COTTONTAIL that removes the CoT prompt.

The results in Figure 10 highlight the effectiveness of
Chain-of-Thought (CoT) prompts in improving constraint
solving for line coverage across a diverse set of libraries.
In all cases, COTTONTAIL with CoT prompts (dark bars)
achieves higher coverage than the variant using normal
prompts (light bars), with particularly notable improvements
observed in SQLite, QuickJS, and MuJS. The substantial
gain in SQLite, where coverage increases from approxi-
mately 13,000 to over 15,000 lines, underscores how step-

10

TABLE 3. RESULTS OF PATH CONSTRAINT SELECTOR DESIGN IN COTTONTAIL

Libraries Comparison of Path Constraints Selection — First Phase Comparison of Path Constraints Selection — Second Phase

NoMap Bitmap ECT (ours) NoMap Bitmap ECT (ours)

No.pc Cover. No.pc Cover. No.pc Cover. No.pc Cover. No.pc Cover. No.pc Cover.

Libexpat 461 1,441 187 1,441 159 1,441 6,149 1,684 615 1,681 685 1,687
SQLite 401 11,331 191 11,331 137 11,331 3,618 11,565 313 11,584 687 11,568
MuJS 486 1,404 185 1,404 273 1,404 7,688 2,758 653 2,666 2,550 2,743

JSON-C 223 566 106 566 67 566 7,024 899 355 861 926 887

* The number A(B) in the table represents the number of path constraints (No.pc) collected in the first iterative run (A) and the line coverage (Cover.)
achieved (B). We omitted the comparison with CSTG as it does not follow the iteration working style.

Libxml2 Libexpat SQLite UnQLite MuJS QuickJS JSON-C Jansson
0

2500

5000

7500

10000

12500

15000

17500

L
in

e
C

ov
er

ag
e

4,037

2,511

14,431

2,905 2,746

5,751

918 954

4,729

2,895

16,293

3,101
3,487

7,410

1,006 1,067

Cottontail(NormPro)

Cottontail

Figure 10. Results of normal and CoT prompts for constraint solving

Libxml2 Libexpat SQLite UnQLite MuJS QuickJS JSON-C Jansson
0

5000

10000

15000

20000

L
in

e
C

ov
er

ag
e

4,983

2,684

15,633

2,866 2,792

8,323

1,004 1,115

5,729

2,838

18,708

3,708
4,120

9,414

1,123 1,210

Cottontail(¬Val)

Cottontail

Figure 11. Comparison results of w/ or w/o test case validator

by-step reasoning enables the solver to navigate complex
constraint spaces better. These results suggest that CoT
prompts provide a significant advantage in guiding the
model’s symbolic reasoning process, leading to more ef-
fective exploration and ultimately higher coverage.
RQ2.3: How effective is the test case validator? Since it is
critical to guarantee the soundness of test cases produced by
concolic execution engines, we need to check if the validator
designed in COTTONTAIL works. To have a fair comparison,
we measure the line coverage achieved by COTTONTAIL and
COTTONTAIL(¬VAL) (a variant approach of COTTONTAIL
that removes the test case validator) under the same setting.

Figure 11 presents the line coverage achieved by COT-
TONTAIL and its variant COTTONTAIL(¬VAL) across var-
ious libraries. COTTONTAIL consistently outperforms or
matches its counterpart, with significant improvements in
larger libraries like SQLite, QuickJS, and Libxml2, where it
achieves substantially higher line coverage. Overall, the re-
sults presented in the figure demonstrate that COTTONTAIL
configuration is more effective, especially in complex code-
bases, highlighting the importance of test case validation and

refinement for comprehensive coverage. This is reasonable
as our refinement, designed in Algorithm 1 guarantees the
newly generated test cases are expected to explore different
program paths. Without the validator, COTTONTAIL(¬VAL)
can be treated as a special variant of smart grey-box fuzzing
without the guarantee of systematic program analysis.

We further evaluate the success rate of the LLM-driven
constraint solver in directly producing correct solutions.
Our results indicate that COTTONTAIL successfully solves
70.08% of the cases on average, with a failure rate of
only 29.92%. Importantly, this low failure rate does not
compromise the soundness of COTTONTAIL, as our newly
designed validator—implemented via refineTestCase
in Algorithm 1—systematically refines unreliable results.

RQ2.4: How effective is the history-guided seed acquisi-
tion? To have a better understanding of the contribution of
seed acquisition, we carefully design the following variants:
• COTTONTAIL(RANDSEED): This variant performs ran-

dom seed generation instead of history-guided generation.
• COTTONTAIL(INIT+¬SGEN): This variant is run with

initial seed inputs and disables seed generation.
• COTTONTAIL(INIT+SGEN): This variant is run with ini-

tial seed inputs and generates new seeds when the test
gets saturated (no increased coverage in three minutes).

• COTTONTAIL: This is the default version of our approach,
which is run without any initial seed inputs, enabling the
history-guided seed acquisition component.
We also include the baselines SYMCC and MARCO

to provide a comprehensive comparison. We select one
benchmark per format and run it for 12 hours to compare
its line coverage. Figure 12 presents the detailed results.

Contribution of Guided Seed Generation. By comparing the
results of COTTONTAIL with COTTONTAIL(RANDSEED),
we can observe that the history-guided seed acquisition is
superior to random seed generation. In all selected bench-
marks, COTTONTAIL consistently outperforms its random-
seed variant, achieving noticeably higher line coverage
throughout the 12-hour window. For instance, in SQLite,
COTTONTAIL reaches over 23,000 lines covered, whereas
COTTONTAIL(RANDSEED) stalls below 19,000. These re-
sults demonstrate that historical execution feedback could
guide seed acquisition significantly by prioritizing seeds
with higher potential for new coverage.

Contribution for Changing Testing Saturation. We conduct

11

0 1 2 3 4 5 6 7 8 9 10 11 12

0

1000

2000

3000

Libexpat

0 1 2 3 4 5 6 7 8 9 10 11 12

0

5000

10000

15000

20000

SQLite

0 1 2 3 4 5 6 7 8 9 10 11 12

0

2000

4000

6000

8000

10000

12000
QuickJS

0 1 2 3 4 5 6 7 8 9 10 11 12

0

200

400

600

800

1000

JSON-C

SymCC Marco Cottontail(RandSeed) Cottontail(Init+¬SGen) Cottontail(Init+SGen) Cottontail

Figure 12. Line coverage comparison among COTTONTAIL and variant approaches in 12 hours (x-axis indicates line coverage while y-axis the time)

two sets of comparative analyses to investigate it. First,
by comparing COTTONTAIL(INIT+¬SGEN) with COTTON-
TAIL(INIT+SGEN), we can understand how this compo-
nent boosts testing when the initial seeds are available.
The results show that enabling seed generation significantly
improves coverage when an initial seed is available, high-
lighting the importance of dynamic seed expansion. In par-
ticular, we can observe that baseline approaches usually get
saturated within 2 hours, and it could be interesting to know
how many lines can be covered after the saturation point.
As a result, COTTONTAIL(INIT+SGEN) covers 101, 376,
806, and 21 more lines over Libexpat, SQLite, QuickJS,
and JSON-C than COTTONTAIL(INIT+¬SGEN) within the
latter 10 hours, indicating that enabling the seed generation
will continuously increase the coverage, unlike saturating
the seed generation. Second, by comparing COTTONTAIL
—including its variant configurations—with SYMCC and
MARCO, we can find out how this component works when
there are no seeds. The results show that COTTONTAIL
maintains superior performance even as coverage begins to
saturate, demonstrating its effectiveness in exploring deeper
program states under constrained conditions.

Answer to RQ2: By conducting carefully designed
ablation studies, our results demonstrate the positive
contribution of the newly designed components, includ-
ing structure-aware constraint selection, LLM-driven
constraint solving, and history-guided seed acquisition.

5.3. RQ3: Vulnerability Detection Capability

Details of Newly Detected Vulnerabilities. To evaluate
the practical vulnerability detection capability of COTTON-
TAIL, we run it (using the setting of the variant approach
COTTONTAIL(INIT+¬SGEN) for a fair comparison) and
two baseline approaches in 12 hours and count the number
of new vulnerabilities detected. During the experiments,
COTTONTAIL found 6 previously unknown vulnerabilities
across three testing subjects and reported them to devel-
opers. The vulnerabilities with their subject, version, short
description, and report status are listed in Table 4. These
bugs involved heap memory leaks, buffer overflows, and
stack overflows, with potential risks such as resource ex-
haustion, arbitrary code execution, or denial of services.
Among the detected issues, 4 out of 6 have been fixed
when submitting the paper (six new CVE IDs have been

TABLE 4. NEW VULNERABILITIES DETECTED

ID Subject Description Status CVE-Assigned

#1 MuJS Memory leak Fixed CVE-2024-55061
#2 MuJS Heap overflow Fixed CVE-2025-26082
#3 QuickJS Stack overflow Fixed CVE-2024-13903
#4 QuickJS Stack overflow Fixed CVE-2025-26081
#5 UnQLite Global overflow Reported CVE-2025-26083
#6 UnQLite Heap overflow Reported CVE-2025-3791

assigned), highlighting the practical impact of COTTONTAIL
in improving software security.

Comparison with Existing Approaches. Existing approaches
failed or take too much time to detect it due to a
structure-agnostic (or heavy) path constraints selection strat-
egy or limited constraint-solving capabilities. To be specific,
MARCO can only detect vulnerability #5. MARCO misses
the other five vulnerabilities due to the limited path explo-
ration and heavy scheduling on selecting nodes in CSTG.
For example, when testing MuJS, we found that MARCO
takes 3.2 out of 12 (26.67%) hours of computing time to
schedule and select an optimal path constraint for solving.
SYMCC can only detect four (#1, #3, #5, and #6) of them
and misses others due to the aggressive path constraint
elimination and restricted constraint-solving capabilities.

Case Study. To have a better grasp of the superiority
of COTTONTAIL, we present a case study. Figure 13(a)
shows the vulnerable function, and Figure 13(b) shows seed
and vulnerability triggering input generated by COTTON-
TAIL. The issue occurs when Ap_sort_cmp (Line 2 in
Figure 13(a)) analyzes the ill-defined comparator (“func-
tion(x,y){return y;}” shown in Line 4 in Figure 13(b)) in the
vulnerability triggering input. The unexpected comparator
causes Ap_sort_cmp to access invalid indices, i.e., id_a
in the array during sorting. After invalid accessing, directly
dereferencing the invalid pointer (val_a) leads to a heap
overflow. In short, the unexpected return value from the
sort function causes a heap overflow. Given the seed
input3, to find a new test input to trigger the overflow, a
testing engine should construct an ill-defined sort function
that returns an unexpected value. The efficient way is to
negate the program constraint that requires changing the
bytes after the 94th byte ‘r’ in sort function to a valid
return statement that returns an unexpected value.

3. https://github.com/unifuzz/seeds/blob/master/general_evaluation/mujs/sort.js
4. https://github.com/ccxvii/mujs/issues/193.

12

https://github.com/unifuzz/seeds/blob/master/general_evaluation/mujs/sort.js
https://github.com/ccxvii/mujs/issues/193

1 // Application logic (buggy function) /* jsarray. c */
2 static int Ap_sort_cmp(js_State *J, int idx_a,int idx_b){
3 js_Object *obj = js_tovalue(J, 0)->u.object;
4 if (obj->u.a.simple) {
5 js_Value *val_a = &obj->u.a.array[idx_a];
6 js_Value *val_b = &obj->u.a.array[idx_b];
7 int und_a = val_a->t.type == ...; // heap−overflow
8 // ...
9 }

10 }

(a) buggy function that triggers a new heap-overflow
vulnerability4 detected by COTTONTAIL.

1 // LLM generated test input
2 c = 30000; a = [];
3 for (i = 0; i < 2 * c; i += 1) {a.push(i%c);}

4 a.sort(function (x, y) { return y;}); print(a[100]);

(b) Seed input and vulnerability trigger generated by
COTTONTAIL (the highlighted strings are from LLMs).

Figure 13. Vulnerable function and triggering input in case study

Due to structure-agnostic path constraints selection and
limited constraint solving, MARCO [3] produced 26,575
test inputs (99.9% invalid) and failed to generate a trigger
in 12 hours. SYMCC finds a trigger after 535th iterations
while SYMCC(¬MAP) after 1,811th iterations of constraint
solving. In summary, while existing concolic execution
techniques can negate that branch, the resulting input is
likely syntactically invalid and requires extra work by the
concolic engine to pass the parser checks and generate
the syntactically valid input. In contrast, benefiting from
advanced structure-aware path constraint selection and smart
constraint solving, COTTONTAIL detects this issue faster
within only a few iterations (i.e., 55th).

Answer to RQ3: COTTONTAIL is able to detect pre-
viously unknown vulnerabilities, showing a capable
practical vulnerability detection capability.

6. Perspectives

Potential in Detecting Other Types of Bugs. We have
shown that the highly structured test inputs could detect
previously unknown memory-related vulnerabilities in RQ3.
The test cases generated by COTTONTAIL could potentially
detect other types of bugs (such as parsing or semantic
bugs), benefiting from the higher passing rate for parsing
checks. To detect more types of bugs, extra effort may
be made to construct well-defined test oracles. To support
our claim, we construct a simple test oracle by differential
testing of JSON libraries to detect parsing issues. We define
a potential bug as found if two parsers behave differently
on the same test input. Since potential bugs can be false
positives, as different parsers may be implemented in dif-
ferent standards (e.g., RFC 4627 for Jansson or RFC 7159
for JSON-C), new strategies must be applied to reduce
such false positives caused by inconsistent standards. We
manually analyzed a few of the potential issues and found a
parsing bug5 in JSON-C libraries. The bug is caused by an

5. https://github.com/json-c/json-c/issues/887

TABLE 5. TIME SPLIT FOR EXECUTION AND CONSTRAINT SOLVING

Time Split SQLite QuickJS

4o-mini 4.1-nano 4o-mini 4.1-nano

Execution Time (%) 9.55 12.12 10.11 11.90
Solving Time (%) 90.45 87.88 89.89 88.10

incomplete handling of control characters. Developers have
confirmed and fixed the issue we reported.

Potential in Practical Adoption. We believe COTTONTAIL
can also have substantial potential to be applied in practical
systematic white-box testing, such as SAGE [45], from the
following four perspectives. First, the path constraints that
are worth solving are significantly reduced. As shown in Ta-
ble 3, the newly designed ECT-based path constraints selec-
tion can reduce many redundant path constraints (200%+ re-
duction), saving significant testing time in practice. Second,
the cost of invocation of API is pretty low and COTTONTAIL
can be easily integrated with both closed-source and open-
source LLMs. We use the gpt-4o-mini as our base
LLM, which is an affordable, cheap model ($0.150 / 1M
tokens). Other LLMs such as gpt-4.1-nano (the most
cost-effective gpt-4.1 model released on 14/04/2025) and
deepseek-v3 (a cheap and open source model released
on 20/01/2025) can also be easily integrated within COT-
TONTAIL. Third, the potential of Solve-Complete paradigm
for constraint solving is innovative and can be further im-
proved via advanced solutions. During our experiments, we
found that when using the CoT prompts, it would be more
beneficial to combine expert knowledge into the completion
phase. Our limited knowledge presented in Figure 2 has
already shown a significant boost for high-demand structure-
aware test input generation in the evaluation.

Fourth, we investigate the time spent on execution and
constraint solving when running COTTONTAIL. The solving
time refers to the time from the engine to take an input to
perform concolic execution and give out the solution after
constraint solving, and the execution time refers to the time
for the execution of the test program with generated test in-
puts. Table 5 shows the results over two test programs across
two LLMs within 1 hour of concolic testing. We could see
that the solving time accounts for 89.08% of the overall
testing time. This is mainly because the GPT API invocation
takes time, and it is known that the LLMs are not as fast as
traditional solvers like Z3 [13], [27], [31]. Note that such a
proportion is reasonable, as constraint solving is a complex
process that requires significant computational resources and
time [4], [32], [46]. For example, both SYMCC [1] and S2E
[46] spend more than 90% of their solving time on analyzing
complex software systems (e.g., OpenJPEG). Since practical
performance is still bound to theoretical limits like constraint
solving, further improvements (e.g., [47]) on speeding up
API invocations could alleviate this issue, as we can already
see that a newer version LLM gpt-4.1-nano could act
faster compared with the older version of LLM.

13

https://github.com/json-c/json-c/issues/887

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Execution Time (h)

2000

4000

6000

8000

10000

12000

14000

16000

18000

Nu
m

be
r o

f L
in

es
 C

ov
er

ed

Nautilus
Fuzz4All
Cottontail

Figure 14. Comparison results of COTTONTAIL against Fuzz4All [29] and
Nautilus [48] over QuickJS in 24 hours.

7. Discussion

Comparison with Structure-aware Black/Grey-box
Fuzzing Approaches. In addition to our comparison with
state-of-the-art white-box (concolic execution) approaches
in the evaluation, we further showcase COTTONTAIL against
complementary approaches like structure-aware black/grey-
box fuzzing techniques. To do so, we evaluate COTTON-
TAIL against an LLM-based black-box fuzzer Fuzz4All [29]
and a grey-box fuzzer Nautilus [48] over the same subject
QuickJS. We select JavaScript as the target language since
it has been employed in the evaluation of Nautilus and is
a widely used, complex input format. Note that Fuzz4All
does not support any format that Cottontail supports out
of the box. Hence, we implemented additional support for
JavaScript in Fuzz4All. we also used gpt-4.1 (same
model used in COTTONTAIL) and enabled an OpenAI key to
set up the autoprompting in Fuzz4All. For a fair comparison,
no initial seed inputs were given for any of the three
approaches. We use line coverage (collected by gcov) to
compare the performance of different approaches. We repeat
fuzzing approaches five times and report median results.

The coverage results are shown in Figure 14. From the
figures, we can observe that COTTONTAIL outperforms both
Nautilus and Fuzz4All by achieving the highest code cover-
age when the experiment runs for 24 hours. We also notice
that COTTONTAIL does not reach the highest coverage at the
beginning, as it needs some time to set up concolic execution
and gradually generate more test inputs. However, after a
longer run, COTTONTAIL surpasses both baselines, after 4
hours for Nautilus and 14 hours for Fuzz4All. These results
are expected, as although black-box and gray-box fuzzers
could act more quickly to generate a large amount of test
inputs, they often struggle to effectively explore more of
the input space after a longer run (i.e., a saturation point
tends to be reached) [41]. This is a long-standing challenge
for black-box and grey-box fuzzing techniques [49], which
tend to get stuck in local optima and fail to explore the
input space effectively [40], [41]. In contrast, COTTONTAIL
can not only systematically explore the input space but also
leverage the power of LLMs to generate new seed inputs,

covering more previously unexplored paths and eventually
exploring more paths in the long run.

In summary, if the user has only a few hours of testing
budget (e.g., 4 hours or less), black or grey-box fuzzing
techniques may be more suitable. However, if the goal is to
achieve high coverage over a longer period (more than 12
hours), COTTONTAIL would be a better choice.
API Costs for Running Experiments. The average invo-
cation of GPT at 816 calls per subject, with an average cost
of 0.78 USD per hour while using gpt-4o-mini model,
demonstrating that the cost of using GPT APIs for constraint
solving is relatively low. Traditional methods of constraint
solving are limited by the solving capabilities as the afore-
mentioned in previous sections; they produce a large amount
of invalid test cases that have limited contribution to the
testing effectiveness for generating highly structured test
inputs, although they are faster. We believe the response
time and robustness of LLM could be improved to further
facilitate the test input generation capabilities.
Threats to Validity. Our findings and conclusions are sub-
ject to several potential threats to validity. The first concerns
external validity, which relates to the generalizability of
our results. As the subject of our study, we only selected
SYMCC and MARCO and their variants, the state-of-the-
art approaches for concolic execution. As objects of our
study, we selected eight widely tested open-source libraries
covering diverse domains, including XML, SQL, JavaScript,
and JSON, which vary in size and popularity. While the
subjects used in our evaluation are representative of a broad
spectrum of real-world applications, we do not claim that the
current COTTONTAIL applies to all software programs. For
example, the current version does not include the evaluation
over large software systems (e.g., V8 and GCC compilers).
Such a scalability limitation is common in concolic exe-
cution, and we plan to integrate advanced techniques (e.g.,
selective path exploration [46]) to alleviate such a limitation.
Another external validity concern driven by the use of LLMs
is the risk of data leakage or memorization by LLMs. We
believe this is unlikely, as the constraint-solving process in
COTTONTAIL is unconventional and unique, making mem-
orization improbable. The second threat involves internal
validity, which refers to the extent to which the evidence
supports the causal relationships claimed in our study. LLMs
are known to exhibit the hallucination problem, generat-
ing outputs that may lack grounding in reality. However,
COTTONTAIL addresses this issue by proposing a test case
validator to validate and refine the generated test cases. To
further reduce the influence of randomness, we also repeated
each experiment five times.
Limitations. COTTONTAIL’s effectiveness is limited by the
completeness of the fuzzing driver. It is well-known that
writing an effective fuzzing driver can be a challenging and
time-consuming process. We plan to leverage the advanced
technique [20] to mitigate the limitation in the future. As
a source-code-based concolic execution, the current version
of COTTONTAIL can only work for the test program whose
source code is available. If only the binary of the target pro-

14

SMU Classification: Restricted

23

Related works

Less execution space More execution space

Less input space

More input space

Cottontail
(ours)

Peach

Fuzz4All
(ICSE’24)

SymCC
(SEC’20)

GBW
(PLDI’08)

Nautilus
(NDSS’19)

Marco
(ICSE’24)

Grdse
(ISSTA’21)

Csmith
(PLDI’11)

AFL

AFLSmart
(TSE’19)LangFuzz

(SEC’12)

Figure 15. Positioning of COTTONTAIL in exploring input/execution space
compared with existing works (the different colors represent three different
fuzzing strategies: black-box , grey-box , and white-box fuzzing) .

gram is available, our approach cannot be directly applied.
We plan to further transfer the same idea to SYMQEMU
[50], a binary concolic execution that shares the same idea
of SYMCC, to alleviate the limitation. Another limitation is
that it is unclear how COTTONTAIL will perform when han-
dling programs that rely on unstructured inputs or formats
unfamiliar to a pre-trained LLM, which we leave as future
work to investigate.

8. Related Work

Traditional Fuzzing for Software Security. In past
decades, many fuzzing techniques (including black, grey,
and white-box based) have been proposed to improve soft-
ware security. Essentially, they aim to explore the input
space and execution space of a test program more effec-
tively, where the input space refers to the set of all possible
inputs that a program can take, and the execution space
refers to the set of all possible execution paths that a
program can run. To have a clear picture of the positioning
of COTTONTAIL, we differentiate our work from existing
fuzzing techniques in terms of the capability of exploring
input space and execution space in Figure 15.

Black-box fuzzing approaches are typically limited in
exploring both input space and execution space, as they
do not have access to the internal structure or state of
the program being tested. For example, Peach [51] applies
format-aware mutations to an initial set of valid inputs using
a user-defined input specification. Black-box grammar-based
fuzzers focus on generating inputs that conform to specific
syntactic structures, thereby improving the likelihood of
covering more input space. For example, LangFuzz [52]
and Grammarinator [53] parse existing regression tests using
ANTLR grammars for structured input generation.

Greybox fuzzing improves upon black-box techniques
by incorporating feedback mechanisms to guide the fuzzing
process, which helps in exploring the execution space
more effectively. AFL [54] is a well-known general-purpose
fuzzing. Grey-box grammar-aware fuzzers increase the capa-
bilities of exploring execution space. Superion [55] extends

LangFuzz with coverage feedback, prioritizing mutated
seeds that increase coverage. AFLSmart [56] addresses this
issue by re-parsing each generated input added to the queue,
ensuring structural integrity during fuzzing. Weizz [57] iden-
tifies fields and chunks within chunk-based file formats, and
NestFuzz [58] infers inter-field dependencies and the hier-
archical structure of inputs for better test case generation.
While grey-box fuzzing techniques have made significant
strides in exploring input spaces, they still face challenges
in comprehensively exploring execution space.

Concolic execution is known for its capabilities to ex-
plore program paths systematically. QSYM [4] alleviates
the strict soundness requirements of conventional concolic
executors. Intriguer [59] further optimizes QSYM’s sym-
bolic execution with field-level knowledge. Angora [60] and
Matryoshka [61] opt for taint analysis. SYMCC [1] first
proposes compilation-based concolic execution to further
gain performance enhancement. A recent work MARCO [3]
explores code paths by decoupling branch flipping logic
from the symbolic tracing logic and defers it until after
all branch points uncovered are assessed. Syzspec [62] and
Hulk [63] are two recent studies that also leverage input
specifications to guide concolic execution for better path
exploration. However, traditional concolic execution engines
often struggle with generating valid inputs for programs
that require highly structured inputs, as they typically do
not incorporate knowledge about the input format or syn-
tax. To address this challenge, grammar-based white-box
fuzzing techniques have been proposed. Godefroid et al. [64]
introduced a grammar-based white-box fuzzing approach,
which advocates for the use of token symbolization dur-
ing symbolic execution. The resulting token constraints are
then solved using the input grammar. Similarly, CESE [65]
utilizes an input grammar to improve dynamic symbolic
execution for programs that parse this grammar. Grdse [66]
propose grammar-agnostic dynamic symbolic execution that
automatically infers input grammars from seed inputs. Al-
though promising, they are still limited in exploring complex
input formats and deep program paths.

Compared with existing fuzzing approaches, we position
COTTONTAIL as a novel LLM-driven concolic execution
engine that is able to effectively explore both input space
and execution space, as shown in Figure 15. Compared with
black/grey-box fuzzing, COTTONTAIL performs systematic
path exploration instead of random test case generation/mu-
tation, making it more suitable for comprehensive program
analysis. Compared to white-box fuzzing, COTTONTAIL
is superior for its structure-aware path selection, smart
constraint solving, and capable of acquiring new seeds,
which address three long-standing issues in existing con-
colic execution approaches. The major contribution, i.e.,
smart constraint solving that leverages LLM with Solve-
Complete paradigm, is orthogonal to existing white-box
fuzzing techniques, which can be potentially integrated to
further improve the performance of concolic execution.

LLM-assisted Fuzzing for Software Security. Recent re-
search has demonstrated their potential in software secu-

15

rity tasks such as fuzz testing. ChatFuzz [31] employs an
LLM to enhance input generation for protocol fuzzing.
Codamosa [67] uses LLMs to generate example test cases
for under-covered functions, addressing coverage plateaus
in search-based software testing. Fuzz4All [29] combines
LLMs with evolutionary algorithms to generate structured
test inputs for programs C/C++. CovRL-Fuzz [68] and In-
putBlaster [69] integrate LLMs to enhance input generation
for fuzzing in JavaScript engines and mobile apps. AutoExe
[70] uses a generic code-based representation and performs
program synthesis to generate test cases.

Beyond test input generation, LLMs are also applied
to generate fuzz drivers for APIs. Oss-fuzz-gen [71], [72]
employs few-shot learning techniques to create fuzz drivers
based on given APIs. Promptfuzz [20] generates fuzz drivers
through various API mutations, and Zhang et al. [73] eval-
uate different strategies for LLM-based driver generation.
TitanFuzz [30] leverages LLMs to generate both harness
programs and arguments for fuzzing deep learning libraries.

Unlike existing LLM-based solutions that randomly gen-
erate test inputs, which can explore a larger input space but
are limited in exploring execution space (e.g., Fuzz4All [29]
as shown in Figure 15), we propose to combine more precise
semantic information (i.e., path constraints) with LLM to
improve its test case generation capabilities. Besides, we
also utilize a novel Solve-Complete paradigm for smart
constraint solving, yielding promising code coverage and
vulnerability detection capabilities.

9. Conclusion

We presented COTTONTAIL, a new LLM-driven concolic
execution engine to generate highly structured test inputs
for parsing testing. COTTONTAIL’s novelties lie in the de-
sign of structure-aware constraint selection to select path
constraints that are worth exploring, LLM-driven constraint
solving to smartly produce test cases that not only satisfy
the path constraints but also align with syntax rules, and
history-guided seed acquisition to generate new seed inputs
whenever the engine starts testing or the testing process
saturates. We compared COTTONTAIL with state-of-the-art
concolic execution engines, and the results demonstrate the
superior performance of COTTONTAIL in terms of code cov-
erage and vulnerability detection capability. Our study has
shown promising potential in combining traditional program
analysis with LLMs, calling for more advanced proposals
combining LLMs to improve software security.

Acknowledgments

We sincerely appreciate Cristian Cadar for his construc-
tive suggestions in improving the article. We thank the
anonymous reviewers and our shepherd for their insightful
feedback and comments. We also appreciate the developers
of MuJS, QuickJS, UnQlite, and JSON-C for their
prompt confirmation and fixing of our reported issues.

References

[1] S. Poeplau and A. Francillon, “Symbolic Execution with SymCC:
Don’t Interpret, Compile!” in Proceedings of the 29th USENIX Se-
curity Symposium (USENIX Security), 2020, pp. 181–198.

[2] J. Chen, W. Han, M. Yin, H. Zeng, C. Song, B. Lee, H. Yin, and
I. Shin, “SYMSAN: Time and Space Efficient Concolic Execution
via Dynamic Data-flow Analysis,” in Proceedings of the 31st USENIX
Security Symposium (USENIX Security), 2022, pp. 2531–2548.

[3] J. Hu, Y. Duan, and H. Yin, “Marco: A Stochastic Asynchronous Con-
colic Explorer,” in Proceedings of the 46th IEEE/ACM International
Conference on Software Engineering (ICSE), 2024, pp. 1–12.

[4] I. Yun, S. Lee, M. Xu, Y. Jang, and T. Kim, “QSYM: A practical con-
colic execution engine tailored for hybrid fuzzing,” in 27th USENIX
Security Symposium (USENIX Security), 2018, pp. 745–761.

[5] H. Tu, “Boosting Symbolic Execution for Heap-Based Vulnerabil-
ity Detection and Exploit Generation,” in Proceedings of the 45th
International Conference on Software Engineering: Companion Pro-
ceedings (ICSE-NIER), 2023, pp. 218–220.

[6] P. Pitigalaarachchi, X. Ding, H. Qiu, H. Tu, J. Hong, and L. Jiang,
“KRover: A Symbolic Execution Engine for Dynamic Kernel Anal-
ysis,” in Proceedings of the 2023 ACM SIGSAC Conference on
Computer and Communications Security (CCS), 2023, pp. 2009–
2023.

[7] H. Tu, L. Jiang, X. Ding, and H. Jiang, “FastKLEE: Faster Symbolic
Execution via Reducing Redundant Bound Checking of Type-Safe
Pointers,” in Proceedings of the ACM Joint European Software Engi-
neering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE), 2022, pp. 1741–1745.

[8] S. Lu, Z. Feng, D. Guo, S. Wang, D. Tang, N. Duan, M. Zhou et al.,
“CodeXGLUE: A Benchmark Dataset and Open Challenge for Code
Intelligence,” arXiv preprint arXiv:2102.04664, 2021.

[9] D. Nam, A. Macvean, V. Hellendoorn, B. Vasilescu, and B. Myers,
“Using an LLM to Help with Code Understanding,” in Proceedings
of the IEEE/ACM 46th International Conference on Software Engi-
neering (ICSE), 2024, pp. 1–13.

[10] W. Sun, Y. Miao, Y. Li, H. Zhang, C. Fang, Y. Liu, G. Deng,
Y. Liu, and Z. Chen, “Source Code Summarization in the Era of
Large Language Models,” in Proceedings of the IEEE/ACM 47th
International Conference on Software Engineering (ICSE), 2025, pp.
1882–1894.

[11] W. Ma, S. Liu, Z. Lin, W. Wang, Q. Hu, Y. Liu, C. Zhang, L. Nie,
L. Li, and Y. Liu, “LMs: Understanding Code Syntax and Semantics
for Code Analysis,” arXiv preprint arXiv:2305.12138, 2023.

[12] C. Fang, N. Miao, S. Srivastav, J. Liu, R. Zhang, R. Fang, Asmita,
R. Tsang, N. Nazari, H. Wang, and H. Homayoun, “Large Language
Models for Code Analysis: Do LLMs Really Do Their Job?” in
Proceedings of the 33rd USENIX Security Symposium (USENIX
Security), 2024, pp. 829–846.

[13] J. Wei, X. Wang, D. Schuurmans, M. Bosma, B. Ichter, F. Xia, E. H.
Chi, Q. V. Le, and D. Zhou, “Chain-of-thought Prompting Elicits
Reasoning in Large Language Models,” in Proceedings of the 36th
International Conference on Neural Information Processing Systems
(NeurIPS), 2022, pp. 1–14.

[14] D. of CGC. DARPA Cyber Grand Challenge. [Online]. Available:
https://www.darpa.mil/research/programs/cyber-grand-challenge

[15] S. K. Cha, T. Avgerinos, A. Rebert, and D. Brumley, “Unleashing
Mayhem on Binary Code,” in Proceedings of the IEEE Symposium
on Security and Privacy (S&P), 2012, pp. 380–394.

[16] D. of the Team Atlanta. Concolic Execution used
in the Winner Team of AIxCC. [Online]. Avail-
able: https://github.com/Team-Atlanta/aixcc-afc-atlantis/tree/main/
example-crs-webservice/crs-multilang/uniafl/src/concolic

16

https://www.darpa.mil/research/programs/cyber-grand-challenge
https://github.com/Team-Atlanta/aixcc-afc-atlantis/tree/main/example-crs-webservice/crs-multilang/uniafl/src/concolic
https://github.com/Team-Atlanta/aixcc-afc-atlantis/tree/main/example-crs-webservice/crs-multilang/uniafl/src/concolic

[17] Z3. (2025) A Theorem Prover from Microsoft Research. [Online].
Available: https://github.com/z3prover/z3

[18] D. Trabish, S. Itzhaky, and N. Rinetzky, “A bounded symbolic-size
model for symbolic execution,” in Proceedings of ACM Joint Meeting
on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, 2021, pp. 1190–1201.

[19] H. Tu, L. Jiang, J. Hong, X. Ding, and H. Jiang, “Concretely Mapped
Symbolic Memory Locations for Memory Error Detection,” IEEE
Transactions on Software Engineering, vol. 50, no. 7, pp. 1747–1767,
2024.

[20] Y. Lyu, Y. Xie, P. Chen, and H. Chen, “Prompt Fuzzing for Fuzz
Driver Generation,” in Proceedings of ACM SIGSAC Conference on
Computer and Communications Security, 2024, pp. 3793–3807.

[21] K. Ispoglou, D. Austin, V. Mohan, and M. Payer, “FuzzGen: Auto-
matic fuzzer generation,” in Proceedings of the 29th USENIX Security
Symposium (USENIX Security), 2020, pp. 2271–2287.

[22] B. Jeong, J. Jang, H. Yi, J. Moon, J. Kim, I. Jeon, T. Kim, W. Shim,
and Y. H. Hwang, “Utopia: Automatic generation of fuzz driver using
unit tests,” in Proceedings of the IEEE Symposium on Security and
Privacy (S&P), 2023, pp. 2676–2692.

[23] J. Lin and D. Mohaisen, “From Large to Mammoth: A Comparative
Evaluation of Large Language Models in Vulnerability Detection,” in
Proceedings of the Network and Distributed System Security Sympo-
sium (NDSS), 2025, pp. 1–18.

[24] H. Pearce, B. Tan, B. Ahmad, R. Karri, and B. Dolan-Gavitt, “Exam-
ining zero-shot vulnerability repair with large language models,” in
Proceedings of the IEEE Symposium on Security and Privacy (S&P),
2023, pp. 2339–2356.

[25] Z. Luo, H. Zhao, D. Wolff, C. Cadar, and A. Roychoudhury, “Agentic
Concolic Execution,” in Proceedings of the IEEE Symposium on
Security and Privacy (S&P), 2026, pp. 1–19.

[26] S. Ullah, M. Han, S. Pujar, H. Pearce, A. Coskun, and G. Stringhini,
“LLMs Cannot Reliably Identify and Reason About Security Vul-
nerabilities (Yet?): A Comprehensive Evaluation, Framework, and
Benchmarks,” in Proceedings of the IEEE Symposium on Security
and Privacy (S&P), 2024, pp. 862–880.

[27] Y. Chang, X. Wang, J. Wang, Y. Wu, L. Yang, K. Zhu, H. Chen,
X. Yi, C. Wang, Y. Wang, W. Ye, Y. Zhang, Y. Chang, P. S. Yu,
Q. Yang, and X. Xie, “A Survey on Evaluation of Large Language
Models,” ACM Transactions on Intelligent Systems and Technology,
vol. 15, no. 3, 2024.

[28] Y. Nong, M. Aldeen, L. Cheng, H. Hu, F. Chen, and H. Cai, “Chain-
of-thought prompting of large language models for discovering
and fixing software vulnerabilities,” 2024. [Online]. Available:
https://arxiv.org/abs/2402.17230

[29] C. S. Xia, M. Paltenghi, J. Le Tian, M. Pradel, and L. Zhang,
“Fuzz4All: Universal Fuzzing with Large Language Models,” in Pro-
ceedings of the IEEE/ACM 46th International Conference on Software
Engineering (ICSE), 2024, pp. 1–13.

[30] Y. Deng, C. S. Xia, H. Peng, C. Yang, and L. Zhang, “Large Language
Models Are Zero-Shot Fuzzers: Fuzzing Deep-Learning Libraries via
Large Language Models,” in Proceedings of the ACM International
Symposium on Software Testing and Analysis, 2023, pp. 423–435.

[31] R. Meng, M. Mirchev, M. Böhme, and A. Roychoudhury, “Large
Language Model Guided Protocol Fuzzing,” in Proceedings of the
31st Annual Network and Distributed System Security Symposium
(NDSS), 2024, pp. 1–15.

[32] C. Cadar, D. Dunbar, and D. Engler, “KLEE: Unassisted and Auto-
matic Generation of High-Coverage Tests for Complex Systems Pro-
grams,” in Proceedings of the 8th USENIX Conference on Operating
Systems Design and Implementation (OSDI), 2008, pp. 209–224.

[33] N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang, J. Corbetta,
Y. Shoshitaishvili, C. Kruegel, and G. Vigna, “Driller: Augmenting
Fuzzing Through Selective Symbolic Execution,” in Proceedings of
the Network and Distributed System Security Symposium (NSDI),
2016, pp. 1–16.

[34] S. Shankar, J. Zamfirescu-Pereira, B. Hartmann, A. Parameswaran,
and I. Arawjo, “Who Validates the Validators? Aligning LLM-assisted
Evaluation of LLM Outputs with Human Preferences,” in Proceedings
of the Annual ACM Symposium on User Interface Software and
Technology (UIST), 2024, pp. 1–14.

[35] Z. Wang, L. Zhang, C. Cao, N. Luo, X. Luo, and P. Liu, “How Does
Naming Affect LLMs on Code Analysis Tasks?” 2024. [Online].
Available: https://arxiv.org/abs/2307.12488

[36] R. S. Alsuhaibani, C. D. Newman, M. J. Decker, M. L. Collard, and
J. I. Maletic, “On the naming of methods: A survey of professional
developers,” in Proceedings of the 43rd International Conference on
Software Engineering (ICSE), 2021, pp. 587––599.

[37] D. G. Feitelson, A. Mizrahi, N. Noy, A. B. Shabat, O. Eliyahu, and
R. Sheffer, “How Developers Choose Names,” IEEE Transactions on
Software Engineering, vol. 48, no. 01, pp. 37–52, 2022.

[38] C. Charitsis, C. Piech, and J. C. Mitchell, “Function names: Quanti-
fying the relationship between identifiers and their functionality to
improve them,” in Proceedings of the Ninth ACM Conference on
Learning@ Scale, 2022, pp. 93–101.

[39] W. Akram, Y. Jiang, Y. Zhang, H. A. Khan, and H. Liu, “LLM-Based
Method Name Suggestion with Automatically Generated Context-
Rich Prompts,” Proceedings of the ACM Software Engineering, vol. 2,
no. FSE, pp. 1–22, 2025.

[40] W. Gao, V.-T. Pham, D. Liu, O. Chang, T. Murray, and B. I.
Rubinstein, “Beyond the Coverage Plateau: A Comprehensive Study
of Fuzz Blockers (Registered Report),” in Proceedings of the 2nd
International Fuzzing Workshop, 2023, pp. 47–55.

[41] T. Klooster, F. Turkmen, G. Broenink, R. Ten Hove, and M. Böhme,
“Continuous Fuzzing: A Study of the Effectiveness and Scalability of
Fuzzing in CI/CD Pipelines,” in IEEE/ACM International Workshop
on Search-Based and Fuzz Testing (SBFT), 2023, pp. 25–32.

[42] K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov, “Ad-
dressSanitizer: A Fast Address Sanity Checker,” in Proceedings of
the USENIX Annual Technical Conference, 2012, pp. 309–318.

[43] S. Gan, C. Zhang, X. Qin, X. Tu, K. Li, Z. Pei, and Z. Chen, “Collafl:
Path Sensitive Fuzzing,” in Proceedings of the IEEE Symposium on
Security and Privacy (S&P), 2018, pp. 679–696.

[44] V. J. Manès, H. Han, C. Han, S. K. Cha, M. Egele, E. J. Schwartz,
and M. Woo, “The Art, Science, and Engineering of Fuzzing: A
Survey,” IEEE Transactions on Software Engineering, vol. 47, no. 11,
pp. 2312–2331, 2019.

[45] P. Godefroid, M. Y. Levin, and D. Molnar, “SAGE: Whitebox Fuzzing
for Security Testing,” Communications of the ACM, vol. 55, no. 3,
pp. 40–44, 2012.

[46] V. Chipounov, V. Kuznetsov, and G. Candea, “S2E: A Platform for
In-vivo Multi-path Analysis of Software Systems,” ACM SIGPLAN
Notices, vol. 46, no. 3, pp. 265–278, 2011.

[47] K. Ayoub. Accelerating Large Language Models with TensorRT-LLM
and Serving (OpenAI-Compatible API). https://blog.gopenai.com/
accelerating-large-language-models-with-tensorrt-llm-db928323ddbf.

[48] C. Aschermann, T. Frassetto, T. Holz, P. Jauernig, A.-R. Sadeghi, and
D. Teuchert, “NAUTILUS: Fishing for Deep Bugs with Grammars,”
in Proceedings of the Network and Distributed System Security Sym-
posium (NDSS), 2019, pp. 1–15.

[49] M. Boehme, C. Cadar, and A. Roychoudhury, “Fuzzing: Challenges
and Reflections,” IEEE Software, vol. 38, no. 03, pp. 79–86, 2021.

[50] S. Poeplau and A. Francillon, “SymQEMU: Compilation-based Sym-
bolic Execution for Binaries,” in Proceedings of Network and Dis-
tributed System Security Symposium (NDSS), 2021, pp. 1–18.

[51] Peach Fuzzer. [Online]. Available: https://peachtech.gitlab.io/
peach-fuzzer-community/

[52] C. Holler, K. Herzig, and A. Zeller, “Fuzzing with Code Fragments,”
in Proceedings of the 21st USENIX Security Symposium (USENIX
Security), 2012, pp. 445–458.

17

https://github.com/z3prover/z3
https://arxiv.org/abs/2402.17230
https://arxiv.org/abs/2307.12488
https://blog.gopenai.com/accelerating-large-language-models-with-tensorrt-llm-db928323ddbf
https://blog.gopenai.com/accelerating-large-language-models-with-tensorrt-llm-db928323ddbf
https://peachtech.gitlab.io/peach-fuzzer-community/
https://peachtech.gitlab.io/peach-fuzzer-community/

[53] R. Hodován, Á. Kiss, and T. Gyimóthy, “Grammarinator: A
Grammar-based Open Source Fuzzer,” in Proceedings of the 9th ACM
SIGSOFT International Workshop on Automating TEST Case Design,
Selection, and Evaluation, 2018, pp. 45–48.

[54] A. Fioraldi, D. Maier, H. Eißfeldt, and M. Heuse, “AFL++: Com-
bining Incremental Steps of Fuzzing Research,” in 14th USENIX
Workshop on Offensive Technologies (WOOT), 2020, pp. 1–12.

[55] J. Wang, B. Chen, L. Wei, and Y. Liu, “Superion: Grammar-aware
Greybox Fuzzing,” in Proceedings of the IEEE/ACM International
Conference on Software Engineering (ICSE), 2019, pp. 724–735.

[56] V.-T. Pham, M. Böhme, A. E. Santosa, A. R. Căciulescu, and A. Roy-
choudhury, “Smart Greybox Fuzzing,” IEEE Transactions on Software
Engineering, vol. 47, no. 9, pp. 1980–1997, 2019.

[57] A. Fioraldi, D. C. D’Elia, and E. Coppa, “WEIZZ: Automatic Grey-
box Fuzzing for Structured Binary Formats,” in Proceedings of the
29th ACM SIGSOFT International Symposium on Software Testing
and Analysis (ISSTA), 2020, pp. 1–13.

[58] P. Deng, Z. Yang, L. Zhang, G. Yang, W. Hong, Y. Zhang, and
M. Yang, “NestFuzz: Enhancing Fuzzing with Comprehensive Un-
derstanding of Input Processing Logic,” in Proceedings of the 2023
ACM SIGSAC Conference on Computer and Communications Secu-
rity (CCS), 2023, pp. 1272–1286.

[59] M. Cho, S. Kim, and T. Kwon, “Intriguer: Field-level Constraint
Solving for Hybrid Fuzzing,” in Proceedings of the ACM Conference
on Computer and Communications Security, 2019, pp. 515–530.

[60] P. Chen and H. Chen, “Angora: Efficient Fuzzing by Principled
Search,” in Proceedings of the IEEE Symposium on Security and
Privacy (S&P), 2018, pp. 711–725.

[61] P. Chen, J. Liu, and H. Chen, “Matryoshka: Fuzzing Deeply Nested
Branches,” in Proceedings of the ACM SIGSAC Conference on Com-
puter and Communications Security (CCS), 2019, pp. 499–513.

[62] Y. Hao, J. Pu, X. Li, Z. Qian, and A. A. Sani, “SyzSpec: Specifi-
cation Generation for Linux Kernel Fuzzing via Under-Constrained
Symbolic Execution,” in Proceedings of the ACM SIGSAC Conference
on Computer and Communications Security (CCS), 2025, pp. 1–14.

[63] Z. Liu, T. Lee, J. Yu, Z. Kang, and Y. Cao, “The DOMino Effect:
Detecting and Exploiting DOM Clobbering Gadgets via Concolic
Execution with Symbolic DOM,” in Proceedings of the 34th USENIX
Security Symposium (USENIX Security), 2025, pp. 8293–8312.

[64] P. Godefroid, A. Kiezun, and M. Y. Levin, “Grammar-based Whitebox
Fuzzing,” in Proceedings of the ACM Conference on Programming
Language Design and Implementation (PLDI), 2008, pp. 206–215.

[65] R. Majumdar and R.-G. Xu, “Directed Test Generation Using Sym-
bolic Grammars,” in Proceedings of the 22nd IEEE/ACM Interna-
tional Conference on Automated Software Engineering (ICSE), 2007,
pp. 134–143.

[66] W. Pan, Z. Chen, G. Zhang, Y. Luo, Y. Zhang, and J. Wang,
“Grammar-Agnostic Symbolic Execution by Token Symbolization,”
in Proceedings of the 30th ACM SIGSOFT International Symposium
on Software Testing and Analysis (ISSTA), 2021, pp. 374–387.

[67] C. Lemieux, J. P. Inala, S. K. Lahiri, and S. Sen, “Codamosa:
Escaping Coverage Plateaus in Test Generation with Pre-trained Large
Language Models,” in Proceedings of the IEEE/ACM International
Conference on Software Engineering (ICSE), 2023, pp. 919–931.

[68] J. Eom, S. Jeong, and T. Kwon, “Fuzzing JavaScript Interpreters
with Coverage-Guided Reinforcement Learning for LLM-Based Mu-
tation,” in Proceedings of the ACM International Symposium on
Software Testing and Analysis (ISSTA), 2024, pp. 1656–1668.

[69] Z. Liu, C. Chen, J. Wang, M. Chen, B. Wu, Z. Tian, Y. Huang, J. Hu,
and Q. Wang, “Testing the Limits: Unusual Text Inputs Generation
for Mobile App Crash Detection with Large Language Model,” in
Proceedings of the IEEE/ACM 46th International Conference on
Software Engineering (ICSE), 2024, pp. 1–12.

[70] Y. Li, R. Meng, and G. J. Duck, “Large Language Model powered
Symbolic Execution,” vol. 9, no. OOPSLA2, 2025, pp. 1–29.

[71] J. M. Dongge Liu and O. Chang. Fuzz Target Generation
Using LLMs. https://google.github.io/oss-fuzz/research/llms/target_
generation/.

[72] Google, “oss-fuzz-gen,” https://github.com/google/oss-fuzz-gen.

[73] C. Zhang, Y. Zheng, M. Bai, Y. Li, W. Ma, X. Xie, Y. Li, L. Sun,
and Y. Liu, “How Effective Are They? Exploring Large Language
Model Based Fuzz Driver Generation,” in Proceedings of the 33rd
ACM SIGSOFT International Symposium on Software Testing and
Analysis (ISSTA), 2024, pp. 1223–1235.

Appendix A.
Additional Experiments

A.1. Results of Running Setting 2 in Section §5.1

Our results show that COTTONTAIL consistently
achieves the highest line and branch coverage in the majority
of the evaluated benchmarks, although it was allocated only
one hour of execution time - significantly less than the
12-hour time budget used by baseline approaches such as
SYMCC and MARCO (and their respective variants). In
particular, COTTONTAIL attains the best line coverage in
7 of 8 programs. On average, it covers up to 4.4k lines
(6.77% on average) more and 2.8k branches (9.57% on av-
erage) more in total than all other techniques. These results
highlight the effectiveness and efficiency of COTTONTAIL
in rapidly exploring diverse program paths and uncovering
deep execution behaviors, even under constrained time set-
tings. There are a few cases where COTTONTAIL covers less
branch coverage than MARCO (e.g., in Libxml2). This is
because MARCO designs the path selection based on random
sampling, so a few more line/branch coverages are expected.

A.2. Results of Running Setting 3 in Section §5.1

When comparing COTTONTAIL against the baseline ap-
proaches SYMCC, MARCO, and their variants within 12
hours, the results show that COTTONTAIL performs bet-
ter than all comparative approaches and achieves higher
line coverage rates from 15.10% to 21.41% on average.
Note that we changed the base model from gpt-4o to
gpt-4o-mini in this setting, as gpt-4o is already supe-
rior to baseline approaches in one hour, and gpt-4o-mini
is more cost-effective.

It is worth noting that on many benchmarks (e.g.,
Libexpat and SQLite), both SYMCC and MARCO ex-
hibit early saturation in their coverage progress. For ex-
ample, SYMCC quickly reaches a plateau in one hour and
then shows minimal improvement, indicating limited ability
to uncover additional program behaviors beyond its initial
exploration. The final coverage achieved by both techniques
remains substantially lower than that of other approaches,
suggesting that their underlying strategies are less effective
in sustaining exploration over time. Thus, fresh seeds are
required to change the saturation and make the testing
more effective, which motivates us to design a new seed
generation strategy to help explore more paths.

18

https://google.github.io/oss-fuzz/research/llms/target_generation/
https://google.github.io/oss-fuzz/research/llms/target_generation/
https://github.com/google/oss-fuzz-gen

Appendix B.
Meta-Review

The following meta-review was prepared by the program
committee for the 2026 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

B.1. Summary

This paper presents COTTONTAIL, a novel concolic ex-
ecution framework to overcome the several key limitations
(i.e., structure-agnostic constraint selection, syntax-ignorant
solving, and reliance on manual or random seed inputs) in
the existing concolic execution systems, by leveraging Large
Language Models (LLMs).

B.2. Scientific Contributions

• Creates a New Tool to Enable Future Science
• Addresses a Long Known Issue
• Provides a Valuable Step Forward in an Established

Field

B.3. Reasons for Acceptance

1) The use of LLMs as integral components in concolic
execution is innovative.

2) The paper tackles several long-standing issues in con-
colic execution, and the experiments show that the pro-
posed solution indeed addresses these issues effectively.

3) The prototype COTTONTAIL is open-sourced to enable
future science. It not only allows further improvement
on concolic execution, but also other software security
research that uses concolic execution as an analysis
tool.

B.4. Noteworthy Concerns

1) The paper’s evaluation targets are limited to small
programs that rely on structured input formats, which
are well understood by LLMs. Its performance on
large programs, programs with unstructured inputs, and
programs with input formats unknown by LLMs is not
evaluated.

2) While the Discussion and Related Work carefully place
the proposed technique into a broader context (i.e.,
automated testing techniques, including fuzzing), such
contextualization comes late in the paper – those who
only read the introduction and evaluation may fail to
appreciate the technique’s limitations.

19

	Introduction
	Background and Motivation
	Design of Cottontail
	Structure-aware Constraint Selection
	Why Structure-aware Selection
	Structural Instrumentation
	Expressive Coverage Tree Maintainer
	ECT-guided Constraint Selector

	Smart LLM-driven Constraint Solving
	LLM-driven Constraint Solver
	Test Case Validator

	History-guided Seed Acquisition
	History Coverage Recorder
	LLM-driven Seed Generator

	Implementation
	Evaluation
	RQ1: Comparison with Baseline Approaches
	RQ2: Ablation Studies
	RQ3: Vulnerability Detection Capability

	Perspectives
	Discussion
	Related Work
	Conclusion
	References
	Appendix A: Additional Experiments
	Results of Running Setting 2 in Section §5.1
	Results of Running Setting 3 in Section §5.1

	Appendix B: Meta-Review
	Summary
	Scientific Contributions
	Reasons for Acceptance
	Noteworthy Concerns

