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Ø Proposed in 1976 [1], one of the most popular program analysis techniques, which scales

for many software testing and computer security applications 

[1] James C. King. 1976. Symbolic execution and program testing. Commun. ACM 19, 7 (July 1976), 385–394.
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int bad_abs(int x) 
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q Why symbolic execution could work?
Ø Execute the program with symbolic inputs

Ø Represent equivalent execution paths with path constraints
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Ø Many applications

– high-coverage test generation, automated debugging, automated program repair, exploit generation, 
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Is current symbolic execution effective enough
to detect vulnerabilities in practice?

NO, and why?
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Ø Possible solutions
1. Fully symbolic (ASE’17)

• consider any possible outcome 
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• consider one possible outcome 
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N states 
accurate but not scale

1 state
scale but not accurate

K states
scale but (in) accurate
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Fixed addresses

Problematic read/write
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Can existing symbolic execution effectively
detect the three vulnerabilities?

NO, two remaining
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Ø Effective solutions
Ø Random search (DFS and BFS)
Ø Heuristic guided search (OSDI’08)

Ø coverage, instruction, etc.

q How does symbolic execution deal with path explosion?

Ø Efficient solutions
Ø With specialized optimizations (HotOS’13)

Ø With code transformation (ECOOP’18)

Inefficient path 
search

No unified 
targets

Ineffective path 
search
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Vulnerable path

How to search vulnerable paths in rather complex software systems?

We need a more efficient and effective path 
exploration ! 
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Can existing symbolic execution effectively
detect the three vulnerabilities?

NO, one remaining still
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q How does symbolic execution generate structured test cases?

Ø Possible solutions
Ø Grammar-based generation (PLDI’08)

• Use grammar specifications to guide generation

Ø Token-level symbolization (ISSTA’21)

• Treating tokens rather than bytes as symbolic data

(Byte-level)

Test cases

(From SE)

We need a new structured test case generation strategy ! 

Structure-agnostic 
path selection

Ineffective 
constraint solving
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q Statement: This thesis aims to boost symbolic execution by designing new solutions to 

alleviate three key limitations in memory modeling/path exploration/test input generation, 

for efficient and effective automatic vulnerability detection.
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How can we efficiently and effectively search vulnerable paths in 
rather complex software systems?

Fixed addresses Problematic W/R
Lim
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d

m
em
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ng

Restricted
input

generation

Path
explosion
challenge

Inefficient
path search

Structure-agnostic
path selection

How can we perform concolic execution to generate
highly structured test inputs for systematically 

testing parsing programs?

Ineffective
constraint solving

How can we support a more complete memory model
for dynamic memory allocations？

Ineffective path
search

No unified
targets
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q Statement: This thesis aims to boost symbolic execution by designing new solutions to 

alleviate three key limitations in memory modeling/path exploration/test input generation, 

for efficient and effective automatic vulnerability detection.

[1] Haoxin Tu, Lingxiao Jiang, and et.al, “Concretely Mapped Symbolic Memory Locations for Memory Error Detection” (IEEE TSE).
[2] Haoxin Tu, Lingxiao Jiang, and et.al,, “FastKLEE: Faster Symbolic Execution via Reducing Redundant Bound Checking of Type-Safe Pointers”, in Tool Demonstrations Track of FSE 2022.
[3] Haoxin Tu, Lingxiao Jiang and et.al,. "Vital: Vulnerability-Oriented Symbolic Execution via Type-Unsafe Pointer-Guided Monte Carlo Tree Search." arXiv:2408.08772 (2024).
[4] Haoxin Tu, Seongmin Lee, and et.al. "Large Language Model-Driven Concolic Execution for Highly Structured Test Input Generation." arXiv:2504.17542 (2025).

Software
Under Test Vulnerabilities

Input Output
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Input Output
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Can our boosted symbolic execution
effectively detect the three vulnerabilities?

YES
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Ø Existing approaches are difficult to satisfy all above requirements
– KLEE and Symsize (FSE’21): none of the requirements can be satisfied

– RAM (ICSE’18): satisfies requirements #B and partially #A but not #C

– Memsight (ASE’17): satisfies requirements #A and #B but not #C
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p New address symbolization

n Input
Ø A set of variables to return from malloc function

n Output
Ø A symbolic-concrete memory map (symLocMap)
Ø Will be used in the latter phase

n Symbolic addressing model

Ø Encoding the symbolic address into path

constraints

Existing:

Ours:
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p Symbolic memory operation and tracking

n Input
Ø symLocMap, a symbolic expression, and a function

n Output
Ø A concrete address or normal symbolic variable or a bug

…

n Tracking example
Ø A memory address is symbolized as “sym_a”

Ø If the freed object is “sym_a” or “sym_a + 100”

• Indicating UAF bugs
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– SymLoc could cover 15% and 48% more 

unique lines of code on average than the two 

baseline approaches.

– SymLoc could detect 169% and 218% more 

spatial memory errors than the two baseline 

approaches.

– Two new vulnerabilities have been detected

• Takeaways
– A more complete memory model could help detect tricky vulnerabilities

RQ1: How does SymLoc perform in 
detecting spatial memory errors?

RQ2: How does SymLoc perform in 
detecting temporal memory errors?

– SymLoc has an overall better temporal memory

error detection capability for detecting UAF and 

DoF errors than static, dynamic, and symbolic

execution-based approaches.
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Traditional
Symbolic Execution

Source code Intermediate 
Representation(IR)
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(1) Observation
– The number of interpreted instructions tends to

be huge (several billion only in one hour run)

(2) Overheads in current symbolic execution
– The color depth represents the overheads of 

an interpreted instruction
– All instructions are equal

Interpretation
...…

Can we reduce the overhead of interpreted instructions
for faster symbolic execution?
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• Key insights
– Only a small portion of memory-related 

instructions need bound checking
– Reduce the interpreting overhead of the 

most frequently interpreted ones (i.e.,
load/store instructions)

– Inspired by Type Inference system [1]

SAFE/SEQ

WILD

• Advantage: overheads in FastKLEE
– Interpretation overheads for some instructions 

are reduced

Reduced overheads

[1] Ccured: George C. Necula, Jeremy Condit, Matthew Harren, Scott McPeak, and Westley Weimer. 2005. CCured: type-safe retrofitting of legacy software. ACM Trans. Program. Lang. Syst. 27, 3 (May 2005), 477–526.
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– Unsafe memory instructions will be stored in CheckList
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• Phase I: Introduce a Type Inference System to classify memory-related instruction types
– Unsafe memory instructions will be stored in CheckList

4
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Symbolic Execution
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A CheckList

Solution: FastKLEE (2/2)
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SAFE/SEQ

WILD

Test program

Observation: Memory errors can

only happen in unsafe pointer

operations (SEQ/WILD)!

• Revisit type inference (Ccurd [1]) int * p = malloc (100);

*(p + “input”) = 1; // unsafe pointer operation

We can exploit such information from type inference to guide the path search!

[1] Ccured: George C. Necula, Jeremy Condit, Matthew Harren, Scott McPeak, and Westley Weimer. 2005. CCured: type-safe retrofitting of legacy software. ACM Trans. Program. Lang. Syst. 27, 3 (May 2005), 477–526.
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34

Monte Carlo Tree Search (MCTS) in AlphaGo

• Analogy: Game tree (win) VS Execution tree (a vulnerable path)

Key question 1: How to select/expand tree nodes?

Key question 2: How to evaluate rewards?

We can use MCTS to guide the path search towards the vulnerable paths!
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Solution: Vital (vulnerability-oriented MCTS)

• How to select/expand tree nodes?
– Use the number of unsafe pointers

– Fact: vulnerabilities always happen on

type-unsafe pointers

How to evaluate rewards?
– Use state simulation (+backpropagation)

– Reward: number of unsafe pointers

Positive correlation

[1] Ccured: George C. Necula, Jeremy Condit, Matthew Harren, Scott McPeak, and Westley Weimer. 2005. CCured: type-safe retrofitting of legacy software. ACM Trans. Program. Lang. Syst. 27, 3 (May 2005), 477–526.

Simulation in KLEE
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– FastKLEE can reduce by up to 9.1% time 

compared with the state-of-the-art 

approach (i.e., KLEE)

– Vital outperforms existing solutions by achieving 

a speedup of up to 30x execution time and a 

reduction of up to 20x memory consumption.

– Detected an unknown vulnerability (a new CVE)

• Takeaways
– Combing type inference with symbolic execution could help do a better path exploration

Results for Direction 1: Can we do the
path search faster?

Results for Direction 2: Can we search
vulnerable paths first?

– Vital outperforms existing search strategies by 

covering up to 90.03% unsafe pointers and 

detecting up to 57.14% more unique memory errors.
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40

q Prevalent concolic execution style
Ø Compilation-based concolic/symbolic execution: SymCC (Usenix Sec’20)

Ø Potentially (ideally) can be used to test any scale software systems

How can we perform concolic execution to generate
highly structured test inputs for systematically testing 

parsing programs?
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Ø Not every path is worth solving (reduce resources/costs)

Ø Existing path constraint selection strategy is not structure-aware

q #C2: how to solve?
Ø Need to make sure resulting test cases are both satisfactory to constraints and valid to syntax

Ø Existing constraint solving only solve for satisfactory, which yields a large number of invalid inputs

q #C3: How to acquire new seeds after saturation?
Ø For a better continuous testing

Ø Existing measurements (e.g., using gcov) could be time-consuming to get during runtime

41
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Ø Can help distinguish structural program paths

Ø Select only interesting path constraints

q Insight 2: strong completion capabilities of LLMs
Ø Can help solve constraints smartly (more details later)

Ø Solve – Complete paradigm (our key contribution)

q Insight 3: knowledgeable resources for seeds
Ø Can help generate fresh seeds when saturated

Input string

MuJS implementation

Seed
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c = 30000; a = []; for (i = 0; i < 2 * c; i += 1) 
{a.push(i%c);} a.sort(function (x, y) {re

c = 30000; a = []; for (i = 0; i < 2 * c; i += 1) 
{a.push(i%c);} a.sort(function (x, y) {return y;}
print(a[100]);```

Step 1: syntax-aware solve process

Step 2: syntax-aware complete process

Tradition solver (Z3): r9
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Solve and Complete for not only constraint satisfiability but also syntax validity

c = 30000; a = []; for (i = 0; i < 2 * c; i += 1) 
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• Takeaways
– Smart LLM-driven constraint solving could help generate more complex test cases

RQ1: How does Cottontail perform 
compared with baseline approaches?

RQ2: Can Cottontail find new 
vulnerabilities in practice?  

– Cottontail detected 6 new vulnerabilities, showing 

practical vulnerability detection capability

– Marco can only detect one and SymCC can detect four
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But not all vulnerabilities can be caught

p SymLoc: new memory modeling

p FastKLEE: efficient path exploration

p Vital: effective path exploration

p Cottontail: smart test input generation
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Ø Extend SymLoc with more realistic memory modeling

Ø Extend Vital into greybox/hybrid as targets to guide directed fuzzing

Ø Extend Cottontail to support complex input formats (e.g., binaries)

– New testing engine that can be more general (e.g., across different langauges)

– Combine LLM with formal verification techniques to guarantee the robustness

– Practical hybrid selective symbolic execution for mixed programs

• New software ecosystem (human written code + AI generated code)

p Extension of Current Solutions

p Program analysis + GenAI
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p Background
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Ø Symbolic execution

p Motivation
Ø What limitations prevent current symbolic execution for vulnerability detection?
Ø Thesis statement and research objects

p Methodology
Ø SymLoc: A new memory model for symbolic execution 
Ø FastKLEE and Vital: Two new path exploration for symbolic execution 
Ø Cottontail: A new structured input generation for symbolic execution 

p Future work
Ø Extend key ideas to hybrid fuzzing
Ø Combine Program Analysis with GenAI
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• Research impact
– Four open-sourced tools to foster further symbolic execution research

– 10+ new memory related vulnerabilities are detected (with 7 new CVE assigned)

• All of them have been fixed by developers so far
[1] Haoxin Tu, Lingxiao Jiang, and et.al, “Concretely Mapped Symbolic Memory Locations for Memory Error Detection” (IEEE TSE).
[2] Haoxin Tu, Lingxiao Jiang, and et.al,, “FastKLEE: Faster Symbolic Execution via Reducing Redundant Bound Checking of Type-Safe Pointers”, in Tool Demonstrations Track of FSE 2022.
[3] Haoxin Tu, Lingxiao Jiang and et.al,. "Vital: Vulnerability-Oriented Symbolic Execution via Type-Unsafe Pointer-Guided Monte Carlo Tree Search." arXiv:2408.08772 (2024).
[4] Haoxin Tu, Seongmin Lee, and et.al. "Large Language Model-Driven Concolic Execution for Highly Structured Test Input Generation." arXiv:2504.17542 (2025).
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Thank you & Questions?
Boosting Symbolic Execution for Vulnerability Detection

Dissertation Defense by Haoxin Tu (May 9th, 2024)

SymLoc [1]
(TSE’24)

FastKLEE [2]
(FSE’22 Demonstration)

Vital [3]
(under review)

Cottontail [4]
(under review)

Software
Under Test Vulnerabilities

Objective 1: complete and
precise memory model

Objective 2: efficient and
effective path exploration

Objective 3: effective
structured input generation

Input Output
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