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[1] James C. King. 1976. Symbolic execution and program testing. Commun. ACM 19, 7 (July 1976), 385-394. 5
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> Proposed in 1976 [1], one of the most popular program analysis techniques, which scales

for many software testing and computer security applications

Key idea
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Path
constraints

Symbolic
values

SMT solver

Satisfying
Assignments

Symbolic

[1] James C. King. 1976. Symbolic execution and program testing. Commun. ACM 19, 7 (July 1976), 385-394. 5
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int bad_abs(int x)
{
if (x <0)
return =x;
if (x ==1234) |]:" >
return —=x;
return X; , x =|1234 x /=234
} X =-2 ! |
test1.out return -x return x
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0 A toy example |

int bad_abs(int x)
{

E—

if (x <0)
return =x;
if (x ==1234)
return —=x;
return X;
}
X <0;

x>=0&& x =1234;
x>=0 && x !1=1234;
(path constraints)

test1.out
test2.out

test3.out
(test cases)

test1.out

x =|1234 x !=\1234
return -x return X
B
test?2.out test3.out



oooooooo
Computing and
Information Systems

Background: symbolic execution (3/3) & SMU_

IIIIIII




School of
Computing and
Information Systems

e
=
X SMU
~
SINGAPORE MANAGEMENT
UNIVERSITY

Background: symbolic execution (3/3)

0 Why symbolic execution could work?

> Execute the program with symbolic inputs
» Represent equivalent execution paths with path constraints
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a0 Why symbolic execution could work?
> Execute the program with symbolic inputs
» Represent equivalent execution paths with path constraints

> Solve path constraints to obtain one representative input that exercises the program to go

down that specific path

@/_ Z3 STP
LQ Sl cved —> Worked!

Path constraints Constraint Solver

» Many applications
— high-coverage test generation, automated debugging, automated program repair, exploit generation,

wireless sensor networks, online gaming, ...



s

>e SMU

~
SINGAPORE MANAGEMENT
UNIVERSITY

Is current symbolic execution effective enough
to detect vulnerabilities in practice?



-

oS SMU

~
SINGAPORE MANAGEMENT
UNIVERSITY

Is current symbolic execution effective enough
to detect vulnerabilities in practice?

NO, and why?



School of
Computing and
Information Systems

—
° <~ r
AN
_~
U I n e SINGAPORE MANAGEMENT
UNIVERSITY

o Motivation
» What limitations prevent current symbolic execution for vulnerability detection?
» Thesis statement and research objectives



School of
Computing and
Information Systems

UNIVERSITY

Motivation Example Z oMU

void buggy () {

// Vulnl: require complete memory modeling
void * from = malloc (100);

void * to = malloc (100);

if (to > from) { ...}

if (from > to) {
vulnerable_funcl();

}

// Vuln2: require handling path explosion
... // deeply nested
vulnerable_func2();

// Vuln3: require structured test inputs

if (input = “{....}7"){
// application logic
vulnerable_func3();

}else {
earlier_termination();

}

}
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void buggy () {

// Vulnl: require complete memory modeling
void * from = malloc (100);
void * to = malloc (100);
if (to > from){..}
if (from > to) {
vulnerable_funci();

} Can existing symbolic execution effectively

// Vuln2: require handling path explosion deteCt the three VulnerabilitieS?
... // deeply nested

vulnerable_func2();

// Vuln3: require structured test inputs NO
if (input = “{....}") {
// application logic
vulnerable_func3();
} else {
earlier_termination();
}
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1. int* array = malloc (100 * sizeof (int));

2. array [i] = 10; /i is symbolic

3. assert(array[j] != 0); /j is symbolic

> Possible solutions
1. Fully symbolic (ASE’'17)

consider any possible outcome

2. Fully concrete (OSDI’'08)

3. Partial symbolic and concrete (S&P’12)

consider one possible outcome

concretize writes,
Possible ranges to read

|

7

N states

\

| accu rate but not scale )

1 state

. scale but not accurate )

K states

| scale but (in) accurate |
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1 How does the engine handle dynamic memory allocations?

1. int* array = malloc (100 * sizeof (int));
2. array [i] = 10; /i is symbolic
3. assert(array[j] != 0); /j is symbolic

Fixed addresses

Problematic read/write

> Possible solutions
1. FU”y SymbOIiC (ASE“I 7) ([ N states A
- consider any possible outcome _accurate but not scale |

—>
2. Fully concrete (OSDI’'08) :>
—

1 state

- consider one possible outcome scale but not accurate
L J

3. Partial symbolic and concrete (S&P’12)
« concretize writes,
- Possible ranges to read

K states
| scale but (in) accurate |

We need a more complete and precise memory modeling !
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// Vulnl: require complete memory modeling
void * from = malloc (100);
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// application logic
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Can existing symbolic execution effectively
detect the three vulnerabilities?

NO, two remaining
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L How does symbolic execution deal with path explosion?

P : « Exponentially many execution paths
void process (char input[3]) { P Al 5

int counter = 0; =
if (input[0] == 'a') counter++; o
if (input[l] == 'b') counter++; [:i> »
if (input[2] == 'c') counter++; -
if (counter >= 3) success|():; -
error () ; -

} 4 conditional nodes 16 (2%) execution paths

» Efficient solutions
> With specialized optimizations (HotOS’13)
> With code transformation (ECOOP’18)
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L How does symbolic execution deal with path explosion?

void process (char input [131) { * Exponentially many execution paths
int counter = 0; =
if (input[0] == 'a') counter++; o
if (input[l] == 'b') counter++; [:i> .
if (input[2] == 'c') counter++; -
if (counter >= 3) success|():; "
error () ; -
} 4 conditional nodes 16 (2%) execution paths
> Efficient solutions > Effective solutions
> With specialized optimizations (HotOS’13) » Random search (DFS and BFS)
> With code transformation (ECOOP’18) > Heuristic guided search (OSDI'08)

» coverage, instruction, etc.
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L How does symbolic execution deal with path explosion?

void process (char input[3]) {

int counter = 0;

if (input[0] == 'a') counter++;

if (input[l] == 'b') counter++; [:i>
if (input[2] == 'c') counter++;

if (counter >= 3) success|();
error () ;

> Efficient solutions

> With specialized optimizations (HotOS’13)
> With code transformation (ECOOP’18)

« Exponentially many execution paths

4 conditional nodes 16 (2% execution paths

> Effective solutions

» Random search (DFS and BFS)
> Heuristic guided search (OSDI'08)

» coverage, instruction, etc.

Inefficient path No unified
search targets

Ineffective path

search
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void * to = malloc (100);
if (to > from){..}
if (from > to) {
vulnerable_funcil();

}

// Vuln2: require handling path explosion
... // deeply nested
vulnerable_func2();
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if (input = “{....}7"){
// application logic
vulnerable_func3();
}else {
earlier_termination();
}
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detect the three vulnerabilities?
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void buggy () {

// Vulnl: require complete memory modeling
void * from = malloc (100);
void * to = malloc (100);

if (to > from){..}
if (from > to){
vulnerable_funcl();

} Can existing symbolic execution effectively
// Vuln2: require handling path explosion ' deteCt the three VulnerabilitieS?

... // deeply nested
vulnerable_func2();

// Vuln3: require structured test inputs NO, one remalnlng Stlll
if (input = “{....}") {
// application logic
vulnerable_func3();
} else {
earlier_termination();
}
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] How does symbolic execution generate structured test cases?

Software
(From SE) ;
Parsing E Application | i, ¢
. . E> Code = = Logic Code E:) E
(B Input 5 incerrel, . Output
yte-level) ] H Representation |
Input Error

> Possible solutions
» Grammar-based generation (PLDI'08)
« Use grammar specifications to guide generation
> Token-level symbolization (ISSTA’21)

« Treating tokens rather than bytes as symbolic data
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(From SE) E
Parsing E Application | i, ¢
. . E> Code = = Logic Code E:) E
(B Input E incerrel, . Output
yte-level) ] ﬂ Representation !
Input Error

> Possible solutions

» Grammar-based generation (PLDI'08) - Structure-agnostic

ﬁ path selection
« Use grammar specifications to guide generation Ineffective

constraint solving
> Token-level symbolization (ISSTA’21)

« Treating tokens rather than bytes as symbolic data
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1 How does symbolic execution generate structured test cases? ]

........................................................

Software
(From SE) 5
Parsing E Application | i, ¢
. . E> Code = = Logic Code E:) é
Input i inteimal, . Output
(Byte-level) ] ﬂ Representation |
Input Error

> Possible solutions

> Grammar-based generation (PLDI'08) - Structure-agnostic

path selection
« Use grammar specifications to guide generation Ineffective

constraint solving
> Token-level symbolization (ISSTA’21)

« Treating tokens rather than bytes as symbolic data

We need a new structured test case generation strategy !
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Q Statement: This thesis aims to boost symbolic execution by designing new solutions to
alleviate three key limitations in memory modeling/path exploration/test input generation,

for efficient and effective automatic vulnerability detection.
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How can we support a more complete memory model

for dynamic memory allocations ?

Fixed addresses

pr -
stat stat stat
a=expr;b=exr:ex4\:

Inefficient
path search

No unified
targets

-

Ineffective
constraint solving

Structure-agnostic
path selection

%, 4 How can we perform concolic execution to generate

$
O 9o, %,
b&§9 Path Q’)Q ’@O' highly structured test inputs for systematically
é{&&ob explosion "6‘,}. /}% testing parsing programs?
. (o)
W challenge 2 %
)

Undefined

How can we efficiently and effectively search vulnerable paths in
Unspecified

rather complex software systems?

Ineffective path
search

56
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Q Statement: This thesis aims to boost symbolic execution by designing new solutions to
alleviate three key limitations in memory modeling/path exploration/test input generation,

for efficient and effective automatic vulnerability detection.

USr’]zfé\:v_T_reest ":> IIZ> Vulnerabilities

Input Output

[1] Haoxin Tu, Lingxiao Jiang, and et.al, “Concretely Mapped Symbolic Memory Locations for Memory Error Detection” (IEEE TSE).

[2] Haoxin Tu, Lingxiao Jiang, and et.al,, “FastKLEE: Faster Symbolic Execution via Reducing Redundant Bound Checking of Type-Safe Pointers”, in Tool Demonstrations Track of FSE 2022.
[3] Haoxin Tu, Lingxiao Jiang and et.al,. "Vital: Vulnerability-Oriented Symbolic Execution via Type-Unsafe Pointer-Guided Monte Carlo Tree Search." arXiv:2408.08772 (2024).

[4] Haoxin Tu, Seongmin Lee, and et.al. "Large Language Model-Driven Concolic Execution for Highly Structured Test Input Generation." arXiv:2504.17542 (2025).
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Q Statement: This thesis aims to boost symbolic execution by designing new solutions to
alleviate three key limitations in memory modeling/path exploration/test input generation,

for efficient and effective automatic vulnerability detection.

SymLoc [1] Objective 1: complete and
(TSE'24) precise memory model

U?\zfé\:v?';est “:> Il:> Vulnerabilities

Input Output

[1] Haoxin Tu, Lingxiao Jiang, and et.al, “Concretely Mapped Symbolic Memory Locations for Memory Error Detection” (IEEE TSE).

[2] Haoxin Tu, Lingxiao Jiang, and et.al,, “FastKLEE: Faster Symbolic Execution via Reducing Redundant Bound Checking of Type-Safe Pointers”, in Tool Demonstrations Track of FSE 2022.
[3] Haoxin Tu, Lingxiao Jiang and et.al,. "Vital: Vulnerability-Oriented Symbolic Execution via Type-Unsafe Pointer-Guided Monte Carlo Tree Search." arXiv:2408.08772 (2024).

[4] Haoxin Tu, Seongmin Lee, and et.al. "Large Language Model-Driven Concolic Execution for Highly Structured Test Input Generation." arXiv:2504.17542 (2025).
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Thesis statement and research objectives § 5.

UNIVERSITY

Q Statement: This thesis aims to boost symbolic execution by designing new solutions to
alleviate three key limitations in memory modeling/path exploration/test input generation,

for efficient and effective automatic vulnerability detection.

SymLoc [1] Objective 1: complete and
(TSE24) precise memory model

| FastKLEE [2] 3
Software | (FSE’'22 Demonstration) Objective 2: efficient and “:>
Under Test Vital [3] effective path exploration |

| (under review)

Vulnerabilities

Input Output

[1] Haoxin Tu, Lingxiao Jiang, and et.al, “Concretely Mapped Symbolic Memory Locations for Memory Error Detection” (IEEE TSE).

[2] Haoxin Tu, Lingxiao Jiang, and et.al,, “FastKLEE: Faster Symbolic Execution via Reducing Redundant Bound Checking of Type-Safe Pointers”, in Tool Demonstrations Track of FSE 2022.
[3] Haoxin Tu, Lingxiao Jiang and et.al,. "Vital: Vulnerability-Oriented Symbolic Execution via Type-Unsafe Pointer-Guided Monte Carlo Tree Search." arXiv:2408.08772 (2024).

[4] Haoxin Tu, Seongmin Lee, and et.al. "Large Language Model-Driven Concolic Execution for Highly Structured Test Input Generation." arXiv:2504.17542 (2025).
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Q Statement: This thesis aims to boost symbolic execution by designing new solutions to
alleviate three key limitations in memory modeling/path exploration/test input generation,

for efficient and effective automatic vulnerability detection.

SymLoc [1] Objective 1: complete and
(TSE24) precise memory model

| FastKLEE [2] 3

Software | (FSE'22 Demonstration) Objective 2: efficient and ":>

Under Test Vital [3] effective path exploration |
| (under review)

Vulnerabilities

Input _ Output
| Cottontail [4] Objective 3: effective §
(under review) structured input generation

[1] Haoxin Tu, Lingxiao Jiang, and et.al, “Concretely Mapped Symbolic Memory Locations for Memory Error Detection” (IEEE TSE).

[2] Haoxin Tu, Lingxiao Jiang, and et.al,, “FastKLEE: Faster Symbolic Execution via Reducing Redundant Bound Checking of Type-Safe Pointers”, in Tool Demonstrations Track of FSE 2022.
[3] Haoxin Tu, Lingxiao Jiang and et.al,. "Vital: Vulnerability-Oriented Symbolic Execution via Type-Unsafe Pointer-Guided Monte Carlo Tree Search." arXiv:2408.08772 (2024).

[4] Haoxin Tu, Seongmin Lee, and et.al. "Large Language Model-Driven Concolic Execution for Highly Structured Test Input Generation." arXiv:2504.17542 (2025).
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Motivation Example (with our solutions)  § M.

void buggy () {

// Vulnl: require complete memory modeling
void * from = malloc (100);
void * to = malloc (100);
if (to > from){..}
if (from > to) {
vulnerable_funcl();

}

// Vuln2: require handling path explosion
... // deeply nested
vulnerable_func2();

// Vuln3: require structured test inputs
if (input = “{....}7"){
// application logic
vulnerable_func3();
}else {
earlier_termination();
}




Motivation Example (with our solutions) &MU
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void buggy () {

// Vulnl: require complete memory modeling
void * from = malloc (100);
void * to = malloc (100);

if (to > from){..}
if (from > to) {
vulnerable_funcil();

}

// Vuln2: require handling path explosion
... // deeply nested
vulnerable_func2();

// Vuln3: require structured test inputs
if (input = “{....}7"){
// application logic

vulnerable_func3();
} else {

earlier_termination();
}

Can our boosted symbolic execution
effectively detect the three vulnerabilities?

YES
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A New Memory Model: insights

» Three fundamental designs are required
A. Symbolization of addresses and modeling them into path constraints

B. Practical read/write operation from/to symbolic addresses

A/ NS
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A New Memory Model: insights

» Three fundamental designs are required
A. Symbolization of addresses and modeling them into path constraints
B. Practical read/write operation from/to symbolic addresses

C. Effectively tracking the uses of symbolic addresses

>

S
%=

22



A New Memory Model: insights $ oMU

» Three fundamental designs are required
A. Symbolization of addresses and modeling them into path constraints
B. Practical read/write operation from/to symbolic addresses

C. Effectively tracking the uses of symbolic addresses

» Existing approaches are difficult to satisfy all above requirements

Rethinking Pointer Reasoning
in Symbolic Execution

— KLEE and Symsize (FSE’21): none of the requirements can be satisfied st sl

Depastment of Compeser, Control, and Management Enginecring

Relocatable Addressing Model for Symbolic Execution

- RAM (ICSE’18): satisfies requirements #B and partially #A but not #C iRy
. , . . . A Boun::;m:::;:;ic-size Model for Syr::n:;;ucl:xecution
— Memsight (ASE’17): satisfies requirements #A and #B but not #C gy
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High-level Idea |

(used for state forking)

Symbolic address

a —— symlLocMap

0x555555784d654

(used for memory read/write)
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Solution: Symloc (1/3)

High-level Idea

(used for state forking)

»

Symbolic address

a —— symLocMap

0x555555784d654

(used for memory read/write)

®
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False

True branch False branch
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»Technique 1: new address
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Solution: Symloc (1/3)

High-level Idea

(used for state forking)

b
Ll

Symbolic address

symLocMap

a —»

0x555555784d654

®

True False

<

True branch False branch

' '

_
=
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Two new techniques
»Technique 1: new address
symbolization

»Technique 2: symbolic

memory operation/tracking

'
L

©

symbolic read

Buffer

(used for memory read/write)

N

symbolic write

symbolic memory operations

®

Buffer

o

symbolic memory tracking
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False

True branch False branch
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0 New address symbolization

m Symbolic addressing model

> Encoding the symbolic address into path

constraints
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Existing: (addr, size,arry) € N*" X N* x A

Ours: (symAddr,size,arry) e N*" x N" x A

True

\ 4

S

False

True branch

False branch

'

'
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0 New address symbolization

m Symbolic addressing model

> Encoding the symbolic address into path

constraints

True

\ 4

S

False

True branch

False branch

'

'

—
.
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Existing: (addr, size,arry) € N*" X N* x A

Ours: (symAddr,size,arry) e N*" x N" x A

= Input

> A set of variables to return from malloc function

m Output
> A symbolic-concrete memory map (symLocMap)
> Will be used in the latter phase
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@ symbolic read @
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Buffer + Buffer
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symbolic write V4

symbolic memory operations symbolic memory tracking




Solution: SymLoc (3/3) Z oMU

O Symbolic memory operation and tracking

= Input

Algorithm 1: Symbolic memory operations and tracking

Input: the map symLocMap, a symbolic expression symExpr,

and a function func being executed > symLocMap, a symbolic expression, and a function
Output: a concrete or symbolic expression, or an error
1 conExpr +— () // initialize a concrete expression
2 FreeList +— () / / initialize a list to store freed objects
3 Function SymAddrRes (symLocMap, symExpr, func): u O u t p Ut

ﬂ > A concrete address or normal symbolic variable or a bug

@ symbolic read @
“r
Buffer + Buffer

O
symbolic write v

symbolic memory operations symbolic memory tracking
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O Symbolic memory operation and tracking

= Input

Algorithm 1: Symbolic memory operations and tracking

Input: the map symLocMap, a symbolic expression symExpr, . ] .
and a function func being executed > symLocMap, a symbolic expression, and a function
Output: a concrete or symbolic expression, or an error
1 conExpr «—0 / / initialize a concrete expression

2 FreeList +— () / / initialize a list to store freed objects B O utp ut
3 Function SymAddrRes (symLocMap, symExpr, func):

ﬂ > A concrete address or normal symbolic variable or a bug
0 smbot o ® m Tracking example
Bger - Buffer = > A memory address is symbolized as “sym_a”
mbolic wri @ . T ” “ ”
SAESENISE | | > If the freed object is “sym_a” or “sym_a + 100
symbolic memory operations symbolic memory tracking

« Indicating UAF bugs
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SymlLoc: Evaluation Results & Takeaways & 2MU...

RQ1: How does SymLoc perform in
detecting spatial memory errors?

— SymLoc could cover 15% and 48% more
unique lines of code on average than the two

baseline approaches.

— SymLoc could detect 169% and 218% more
spatial memory errors than the two baseline

approaches.

— Two new vulnerabilities have been detected
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SymLloc: Evaluation Results & Takeaways & MUl
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RQ1: How does SymLoc perform in
detecting spatial memory errors?

RQ2: How does SymLoc perform in
detecting temporal memory errors?

— SymLoc could cover 15% and 48% more
unique lines of code on average than the two

baseline approaches.

— SymLoc could detect 169% and 218% more
spatial memory errors than the two baseline

approaches.

— Two new vulnerabilities have been detected

SymLoc has an overall better temporal memory
error detection capability for detecting UAF and
DoF errors than static, dynamic, and symbolic

execution-based approaches.

aces) I

0 20 40 60 80 100 120 140
The number of detected (ground truth) use-after-free bugs
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RQ1: How does SymLoc perform in
detecting spatial memory errors?

RQ2: How does SymLoc perform in
detecting temporal memory errors?

— SymLoc could cover 15% and 48% more
unique lines of code on average than the two

baseline approaches.

— SymLoc could detect 169% and 218% more
spatial memory errors than the two baseline

approaches.

— Two new vulnerabilities have been detected

SymLoc has an overall better temporal memory
error detection capability for detecting UAF and
DoF errors than static, dynamic, and symbolic

execution-based approaches.

acee) ]

0 20 40 60 80 100 120 140
The number of detected (ground truth) use-after-free bugs

« Takeaways

— A more complete memory model could help detect tricky vulnerabilities
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How to search vulnerable paths in
rather complex software systems?
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How to search vulnerable paths in
rather complex software systems?

Direction 1: Can Direction 2: Can

we do the path we search vuln-
search faster? erable paths first?
(FastKLEE) (Vital)
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How to search vulnerable paths in
rather complex software systems?

Direction 1: Can
we do the path
search faster?

(FastKLEE)
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Efficient Path Exploration: Rethinking ¢ SMU_

Symbolic Execution
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Source code

Intermediate Traditional
Representation(IR)

Interpretation
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Efficient Path Exploration: Rethinking Z oMU

Intermediate Traditional
Representation(IR) Symbolic Execution

UNIVERSITY
Source code

(1) Observation

— The number of interpreted instructions tends to
be huge (several billion only in one hour run)

Elapsed: 01: 00: 04

KLEE: done: explored paths = 125017

KLEE: done: avg. constructs per query = 74
KLEE: done: total queries = 8859

KLEE: done: valid queries = 6226

KLEE: done: invalid queries = 2633

KLEE: done: query cex = 8859

KLEE: done: total instructions = 605113213|
KLEE: done: completed paths 125017
KLEE: done: generated tests 65

Interpretation



Efficient Path Exploration: Rethinking $ oMU

UNIVERSITY
Source code

Intermediate Traditional
Representation(IR) Symbolic Execution

(1) Observation (2) Overheads in current symbolic execution
— The number of interpreted instructions tends to — The color depth represents the overheads of
be huge (several billion only in one hour run) an interpreted instruction

— All instructions are equal

Elapsed: 01: 00: 04

KLEE: done: explored paths = 125017

KLEE: done: avg. constructs per query = 74
KLEE: done: total queries = 8859

KLEE: done: valid queries = 6226

KLEE: done: invalid queries = 2633 —

KLEE: done: query cex = 8859

KLEE: done: total instructions = 605113213|
KLEE: done: completed paths 125017
KLEE: done: generated tests 65

Interpretation
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Can we reduce the overhead of interpreted instructions

for faster symbolic execution?
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- Key insights

[1] Ccured: George C. Necula, Jeremy Condit, Matthew Harren, Scott McPeak, and Westley Weimer. 2005. CCured: type-safe retrofitting of legacy software. ACM Trans. Program. Lang. Syst. 27, 3 (May 2005), 477-526.
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- Key insights
— Only a small portion of memory-related
instructions need bound checking

[1] Ccured: George C. Necula, Jeremy Condit, Matthew Harren, Scott McPeak, and Westley Weimer. 2005. CCured: type-safe retrofitting of legacy software. ACM Trans. Program. Lang. Syst. 27, 3 (May 2005), 477-526.
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- Key insights
— Only a small portion of memory-related
instructions need bound checking
— Reduce the interpreting overhead of the
most frequently interpreted ones (i.e.,
load/store instructions)

[1] Ccured: George C. Necula, Jeremy Condit, Matthew Harren, Scott McPeak, and Westley Weimer. 2005. CCured: type-safe retrofitting of legacy software. ACM Trans. Program. Lang. Syst. 27, 3 (May 2005), 477-526.
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Solution: FastKLEE (1/2) G SMU_
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- Key insights
— Only a small portion of memory-related
instructions need bound checking
— Reduce the interpreting overhead of the
most frequently interpreted ones (i.e.,
load/store instructions)
— Inspired by Type Inference system [1]

Inference algorithm

SAFE
Pointer kinds c + SEQ
WILD
0101001010101

‘ WILD 1010000101110

. Run-time cheoks _ (1010100160101
———————|e110101010110
C 1000101010101
0101101111001
e010101110101

Type checker x SAFE/SEQ Memory-safe

[1] Ccured: George C. Necula, Jeremy Condit, Matthew Harren, Scott McPeak, and Westley Weimer. 2005. CCured: type-safe retrofitting of legacy software. ACM Trans. Program. Lang. Syst. 27, 3 (May 2005), 477-526.
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- Key insights - Advantage: overheads in FastKLEE

— Only a small portion of memory-related — Interpretation overheads for some instructions
instructions need bound checking are reduced

— Reduce the interpreting overhead of the
most frequently interpreted ones (i.e.,
load/store instructions)

— Inspired by Type Inference system [1]

Inference algorithm

SAFE
Pointer kinds c + SEQ
WILD
0101001010101

| WILD 1010000101110

Run time checks 1010100100101

— (0110101010110

C 1000101010101
0101101111001

0010101110101

Type checker x SAFE/SEQ Memory-safe

\ ">~ Reduced overheads

<R

[1] Ccured: George C. Necula, Jeremy Condit, Matthew Harren, Scott McPeak, and Westley Weimer. 2005. CCured: type-safe retrofitting of legacy software. ACM Trans. Program. Lang. Syst. 27, 3 (May 2005), 477-526.
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Phase |

>

Traditional
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Phase Il
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Phase I: Introduce a Type Inference System to classify memory-related instruction types
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Intermediate
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- Traditional
Symbolic Execution

Type Inference
System

A CheckList

»
»

Phase |

Phase Il

Unsafe memory instructions will be stored in CheckList
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Phase I: Introduce a Type Inference System to classify memory-related instruction types

Intermediate

T .
Source code Representation(IR)

e

Type Inference
System

A CheckList
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Traditional
Symbolic Execution

Phase |

R Fast
Symbolic Execution

Phase Il

Unsafe memory instructions will be stored in CheckList

Phase II: Conduct Customized Memory Operation in Fast symbolic execution

Only perform checking for Unsafe memory instructions during interpretation
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How to search vulnerable paths in
rather complex software systems?

Direction 2: Can
we search vuln-
erable paths first?
(Vital)
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[1] Ccured: George C. Necula, Jeremy Condit, Matthew Harren, Scott McPeak, and Westley Weimer. 2005. CCured: type-safe retrofitting of legacy software. ACM Trans. Program. Lang. Syst. 27, 3 (May 2005), 477-526.
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- Revisit type inference (Ccurd [1])

[1] Ccured: George C. Necula, Jeremy Condit, Matthew Harren, Scott McPeak, and Westley Weimer. 2005. CCured: type-safe retrofitting of legacy software. ACM Trans. Program. Lang. Syst. 27, 3 (May 2005), 477-526.
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Insight 1: approximate a vulnerable path < SMU_

UY\IV

- Revisit type inference (Ccurd [1])

Inference algorithm
SAFE
Pointer kinds C + SEQ
WILD
0101001010101
WILD 1010000101110

Run-time checks 1010100100101
0110101010110
c 1000101010101
0101101111001
0010101110101
x SAFE/SEQ

Memory-safe
Test program Type checker R

[1] Ccured: George C. Necula, Jeremy Condit, Matthew Harren, Scott McPeak, and Westley Weimer. 2005. CCured: type-safe retrofitting of legacy software. ACM Trans. Program. Lang. Syst. 27, 3 (May 2005), 477-526.



Insight 1: approximate a vulnerable path < oMU

UNIVERSITY

- Revisit type inference (Ccurd [1])

Inference algorithm

Pointer kinds

C

Test program

c +

SAFE
SEQ
WILD

|

%

Type checker

WILD

, Run-time checks

0101001010101
1010000101110
1010100100101
0110101010110
1000101010101
0101101111001
0010101110101

Memory-safe

Observation: Memory errors can

only happen in unsafe pointer
operations (SEQ/WILD)!

[1] Ccured: George C. Necula, Jeremy Condit, Matthew Harren, Scott McPeak, and Westley Weimer. 2005. CCured: type-safe retrofitting of legacy software. ACM Trans. Program. Lang. Syst. 27, 3 (May 2005), 477-526.
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Revisit type inference (Ccurd [1])

Inference algorithm

SAFE
Pointer kinds C + SEQ
WILD
‘ ‘ WILD

Insight 1: approximate a vulnerable path

< SMU
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int * p = malloc (100);

*(p + “input’) = 1; I/ unsafe pointer operation

Type checker

0101001010101
1010000101110
1010100100101
0110101010110
1000101010101
0101101111001
0010101110101

E l Run-time checks
< x SAFE/SEQ

Test program

Memory-safe

Observation: Memory errors can

only happen in unsafe pointer
operations (SEQ/WILD)!

[1] Ccured: George C. Necula, Jeremy Condit, Matthew Harren, Scott McPeak, and Westley Weimer. 2005. CCured: type-safe retrofitting of legacy software. ACM Trans. Program. Lang. Syst. 27, 3 (May 2005), 477-526.
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- Revisit type inference (Ccurd [1]) int * p = malloc (100);
i *(p + “input’) = 1; // unsafe pointer operation
SAFE
Pointer kinds SEQ
% c + WILD
‘ WILD 0101001010101
1010000101110
Observation: Memory errors can

only happen in unsafe pointer
operations (SEQ/WILD)!

Run-time checks |1010100100101
/ 0110101010110
C 1000101010101
0101101111001
0010101110101

x SAFE/SEQ

Memory-safe
Test program Type checker L

We can exploit such information from type inference to guide the path search!

[1] Ccured: George C. Necula, Jeremy Condit, Matthew Harren, Scott McPeak, and Westley Weimer. 2005. CCured: type-safe retrofitting of legacy software. ACM Trans. Program. Lang. Syst. 27, 3 (May 2005), 477-526.
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Insight 2: search the path smarily
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Run continuously in the allotted time
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" Selection | Expansion —{Simulation |~/ Backpropagation |

C go O
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Monte Carlo Tree Search (MCfS) in AlphaGo
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Insight 2: search the path smartly ¢ oMU

Run continuously in the allotted time

|

" Selection | Expansion —{Simulation |~/ Backpropagation |

-
C go O
: O

Monte Carlo Tree Search (MCfS) in AlphaGo

- Analogy: Game tree (win) Execution tree (a vulnerable path)

We can use MCTS to guide the path search towards the vulnerable paths!
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Run continuously in the allotted time

' Selection > Expansion | Simulation '~ Backpropagation |

ole]e
O

N

Monte Carlo Tree Search (MCfS) in AlphaGo

- Analogy: Game tree (win)

Execution tree (a vulnerable path)

We can use MCTS to guide the path search towards the vulnerable paths!

Key question 1: How to select/expand tree nodes?

Key question 2: How to evaluate rewards?

34
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[1] Ccured: George C. Necula, Jeremy Condit, Matthew Harren, Scott McPeak, and Westley Weimer. 2005. CCured: type-safe retrofitting of legacy software. ACM Trans. Program. Lang. Syst. 27, 3 (May 2005), 477-526.
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9 How to select/expand tree nodes?
— Use the number of unsafe pointers

— Fact: vulnerabilities always happen on

type-unsafe pointers

[1] Ccured: George C. Necula, Jeremy Condit, Matthew Harren, Scott McPeak, and Westley Weimer. 2005. CCured: type-safe retrofitting of legacy software. ACM Trans. Program. Lang. Syst. 27, 3 (May 2005), 477-526.
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Solution: Vital (vulnerability-oriented MCTS)
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9 How to select/expand tree nodes?

Use the number of unsafe pointers

Fact: vulnerabilities always happen on

type-unsafe pointers

» 45

g Positive correlation

§40- . . %
@ e
£ 35 . //

3 e .
9

o 301

©

5

@ 251

Qo

£

35

=2 *

201~ . . . .
2000 4000 6000 8000 10000
Number of covered unsafe pointers

12000
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10

detecting up to 57.14% more unique memory errors.

. Vital outperforms existing solutions by achieving

@
[ ]
L ]

o
[ ]
[
°
°

SO Ao o a speedup of up to 30x execution time and a

ntage of Speedups (%)
[ ]

. reduction of up to 20x memory consumption.

. — Detected an unknown vulnerability (a new CVE)

0 5 10 15 20 25 30 35 40
Utilities in GNU Coreutils

37



Evaluation Results & Takeaways ¢ oMU

Results for Direction 1: Can we do the Results for Direction 2: Can we search
path search faster? vulnerable paths first?
— FastKLEE can reduce by up to 9.1% time — Vital outperforms existing search strategies by
compared with the state-of-the-art covering up to 90.03% unsafe pointers and

approach (i.e., KLEE)

10

detecting up to 57.14% more unique memory errors.

. Vital outperforms existing solutions by achieving

@
[ ]
L ]

o
[ ]
[
°
°

o Cep ot % 0 4 a speedup of up to 30x execution time and a

ntage of Speedups (%)

. reduction of up to 20x memory consumption.

. — Detected an unknown vulnerability (a new CVE)

0 5 10 15 20 25 30 35 40
Utilities in GNU Coreutils

« Takeaways

— Combing type inference with symbolic execution could help do a better path exploration
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0 #C1: what to solve?
> Not every path is worth solving (reduce resources/costs)

> EXxisting path constraint selection strategy is not structure-aware

Q #C2: how to solve?
> Need to make sure resulting test cases are both satisfactory to constraints and valid to syntax

> Existing constraint solving only solve for satisfactory, which yields a large number of invalid inputs

0 #C3: How to acquire new seeds after saturation?
» For a better continuous testing

> Existing measurements (e.g., using gcov) could be time-consuming to get during runtime
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1 // seed input Seed

2 ¢ = 30000; a = [];
3 for (1 =0; 1 <2*c; i+=1) { a.push(i%c); }
4 a.sort(function (x, y) { return x - y; }); print(al2 * ¢ - 2]);

l Input string

1 // Parsing logic (/* adapted from jslex.c */)
2 static int jsY_isidentifierpart(int c) {

3 return isdigit(c) //"(bvsge #x00000039 (concat #x000000 k!95))"
4 || isalpha(c) || ¢ == "'$"' || ¢ == '_' || isalpharune(c);
5}
6 static int jsY_lexx(js_State *J){
while (1) {
8 [l s

9 switch (J->lexchar) {

10 case '(': jsY_next(J); return '(';
11 case ')': jsY_next(J); return ')';
12 case ',': jsY_next(J); return ',';
13 Yy (R

14 }

15 fless

A MuJS implementation

42



4 Insight 1: unique implementation characteristic

» Can help distinguish structural program paths

» Select only interesting path constraints

Q Insight 2: strong completion capabilities of LLMs

» Can help solve constraints smartly (more details later)

» Solve — Complete paradigm (our key contribution)

< SMU

SINGAPORE MANAGEMENT
UNIVERSITY

1 // seed input Seed

2 ¢ = 30000; a = [];
3 for (1 =0; i <2 *xc; i+=1) { a.push(i%c); }
t a.sort(function (x, y) { return x - y; }); print(al2 * c - 2]);

l Input string

1 // Parsing logic (/* adapted from jslex.c */)
2 static int jsY_isidentifierpart(int c) {

return isdigit(c) //"(bvsge #x00000039 (concat #x000000 k!95))"

1 || isalpha(c) || ¢ == '$"' || ¢ == '_' || isalpharune(c);
>}
6 static int jsY_lexx(js_State *J){
while (1) {
vy

switch (J->lexchar) {
case '(': jsY_next(J); return '(';
case ')': jsY_next(J); return ')';
case ',': jsY_next(J); return ',';
Y -
}
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Figure 1: Parser checking passing rate comparison between
traditional constraint solver (i.e., Z3) and LLM-driven solver
(designed in COTTONTAIL).
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</> System Prompt (Solve-Complete Paradigm with Chain of Thought)
You are a smart Constraint Solver.
Given a constraint and a marked test input string, please generate new test case step by step:

1. Identify the location of Constraint Mask ("[k!n]") and solve it with the solution of the constraint
- The solution is not arbitrarily chosen; instead, make the combined string align with input syntax,
such as keywords, defined functions, or variable names to ensure the resulting string remains valid.
2. Identify the location of Flexible Mask (*[xxx]") and complete it with a flexible size string:
- The replacement is not randomly selected: instead, follow the syntax of JavaScript and make the
whole string remaining a valid JavaScript code.
3. Ensure final output is enclosed with **".

</> User Prompt

Given the path constraint **‘bvsge #x00000039 (concat #x000000 k!95))"** and the marked seed input
you need to change: **'c =30000; a=[]; for 1=0;1<2 * c; i += 1) {a.push(i%c);} a.sort(function (x, y)
{ r[k!95][xxx]"*", what is the new test input?

</> Response

Let’s solve the constraint step by step:
1. The constraint mask is [k!95] and we now solve it based on the given constraint.
- The constraint suggests the value should be large or equal to ASCII 0x39. Considering the previous
string 'r’, the solution ‘e’ should satisfy the requirements, as ‘return’ is a keyword in JavaScript.
2. The flexible mask is [xxx] and we now complete it with other flexible size strings:
- Since previous string starting with ‘re" after solving, complete ‘[xxx]* with ‘turn y;} print(a[100]);",
as ‘return’ is a keyword, and 'y and ‘a’ are defined variables.
3. Final output:

"¢ =30000; a=[]; for 1=0;i<2 *c;i+=1) {a.push(i%c);} a.sort(function (X, y) {return y;}
print(a[100]);™
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- The solution is not arbitrarily chosen; instead, make the combined string align with input syntax,
such as keywords, defined functions, or variable names to ensure the resulting string remains valid.
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- The replacement is not randomly selected: instead, follow the syntax of JavaScript and make the
whole string remaining a valid JavaScript code.
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1. The constraint mask is [k!95] and we now solve it based on the given constraint.
- The constraint suggests the value should be large or equal to ASCII 0x39. Considering the previous
string 'r’, the solution ‘e’ should satisfy the requirements, as ‘return’ is a keyword in JavaScript.
2. The flexible mask is [xxx] and we now complete it with other flexible size strings:
- Since previous string starting with ‘re" after solving, complete "[xxx]" with ‘turn y;} print(a[100]);",
as ‘return’ is a keyword, and 'y and ‘a’ are defined variables.
3. Final output:
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Given the path constraint | “bvsge #x00000039 (concat #x000000 k!95))""*

you need to change: **'¢ =30000; a=[]; for 1=0;i<2 * ¢;i+=1) {a.pus
{ r[k!95][xxx]"*", what is the new test input?

Jand the marked seed input
h(i%c);} a.sort(function (x, y)

</> Response
Let’s solve the constraint step by step:

1. The constraint mask is [k!95] and we now solve it based on the given constraint.
- The constraint suggests the value should be large or equal to ASCII 0x39. Considering the previous

string ‘1", the solution ‘e’ should satisfy the requirements, as ‘return’ is

a keyword in JavaScript.

2. The flexible mask is [xxx] and we now complete it with other flexible size strings:
- Since previous string starting with ‘re after solving, complete ‘[xxx]" with ‘turn y;} print(a[100]);",

as ‘return’ is a keyword, and 'y and ‘a’ are defined variables.
3. Final output:

print(a[100]);""

"¢ =30000; a=[]; for 1=0;i<2 *c;i+=1) {a.push(i%c);} a.sort(function (X, y) {return y;}

c=30000;a=[];for(1=0;1i<2*c;i+=1)
{a.push(i%c);} a.sort(function (x, y) { r?

Step 1: syntax-aware solve process

c=30000;a=[];for(1i=0;1<2*c;i+=1
{a.push(i%oc);} a.sort(function (x, y) {re

Step 2: syntax-aware complete process

c=30000;a=[];for(1=0;1i<2*c;i+=1)
{a.push(i%oc);} a.sort(function (x, y) {returny;}
print(a[100]);" ™"
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- The replacement is not randomly selected: instead, follow the syntax of JavaScript and make the

whole string remaining a valid JavaScript code.
3. Ensure final output is enclosed with **".

</> User Prompt

Tradition solver (Z3): r9

Given the path constraint | “bvsge #x00000039 (concat #x000000 k!95))""*

you need to change: **'¢ =30000; a=[]; for 1=0;i<2 * ¢;i+=1) {a.pus
{ r[k!95][xxx]"*", what is the new test input?

Jand the marked seed input
h(i%c);} a.sort(function (x, y)

</> Response
Let’s solve the constraint step by step:

1. The constraint mask is [k!95] and we now solve it based on the given constraint.
- The constraint suggests the value should be large or equal to ASCII 0x39. Considering the previous

string 'r’, the solution ‘e’ should satisfy the requirements, as ‘return’ is

a keyword in JavaScript.

2. The flexible mask is [xxx] and we now complete it with other flexible size strings:
- Since previous string starting with ‘re after solving, complete ‘[xxx]" with ‘turn y;} print(a[100]);",

as ‘return’ is a keyword, and 'y and ‘a’ are defined variables.
3. Final output:

print(a[100]);""

"¢ =30000; a=[]; for 1=0;i<2 *c;i+=1) {a.push(i%c);} a.sort(function (X, y) {return y;}

c=30000;a=[];for(1=0;1i<2*c;i+=1)
{a.push(i%c);} a.sort(function (x, y) { r?

Step 1: syntax-aware solve process

c=30000;a=[];for(1i=0;1<2*c;i+=1
{a.push(i%oc);} a.sort(function (x, y) {re

Step 2: syntax-aware complete process

c=30000;a=[];for(1=0;1i<2*c;i+=1)
{a.push(i%oc);} a.sort(function (x, y) {returny;}
print(a[100]);" ™"

Solve and Complete for not only constraint satisfiability but also syntax validity

44



Evaluation Results & Takeaways

oooooooo

Computing and

"| Information Systems

45



Evaluation Results & Takeaways

< SMU

SINGAPORE MANAGEMENT
UNIVERSITY

School of
Computing and
Information Systems

RQI: How does Cottontail perform
compared with baseline approaches?

— Cottontail outperforms state-of-the-art
approaches (SymCC and Marco) by 14.15%

and 14.31% in terms of line coverage

4.74% BN COTTONTAIL
SymCC
MARCO

61.54%

70

45



Evaluation Resulls & Takeaways

£ SMU

SINGAPORE MANAGEMENT

UNIVERSITY

School of

EOﬂJLJtiung and

Information Systems

RQ1: How does Cottontail perform
compared with baseline approaches?

RQ2: Can Cottontail find new
vulnerabilities in practice?

— Cottontail outperforms state-of-the-art
approaches (SymCC and Marco) by 14.15%

and 14.31% in terms of line coverage

Libxml2 — 13.90% B COTTONTAIL
SymCC

Libexpat MARCO
SQLite
UnQLite oLS4%
MulS
QuickJS
JSON-C

Jansson
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— Cottontail detected 6 new vulnerabilities, showing

practical vulnerability detection capability

— Marco can only detect one and SymCC can detect four

ID  Subject Description Status CVE-Assigned

#1 MulJS Memory leak Fixed CVE-2024-55061
#2 MuJS Heap overflow Fixed CVE-2025-26082
#3  Quick]S Stack overflow Fixed CVE-2024-13903
#4  Quick]JS Stack overflow Fixed CVE-2025-26081
#5 UnQLite Global overflow Reported CVE-2025-26083
#6  UnQLite  Heap overflow  Reported = CVE-2025-3791
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RQ1: How does Cottontail perform RQ2: Can Cottontail find new
compared with baseline approaches? vulnerabilities in practice?
— Cottontail outperforms state-of-the-art — Cottontail detected 6 new vulnerabilities, showing

approaches (SymCC and Marco) by 14.15% practical vulnerability detection capability

and 14.31% in terms of line coverage — Marco can only detect one and SymCC can detect four
Libemi2 et 30 oot - — -
Lberpat Marco ID  Subject Description Status CVE-Assigned
SQLite #1 MuJS Memory leak Fixed CVE-2024-55061
UnQite | 0615 s #2 MuJS Heap overflow Fixed CVE-2025-26082

MulS

#3  QuickJS Stack overflow Fixed CVE-2024-13903
#4  Quick]JS Stack overflow Fixed CVE-2025-26081
#5 UnQLite Global overflow Reported CVE-2025-26083
#6  UnQLite  Heap overflow  Reported = CVE-2025-3791

QuickJS
JSON-C

Jansson

70

Takeaways

— Smart LLM-driven constraint solving could help generate more complex test cases
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void buggy () {

// Vulnl: require complete memory modeling
void * from = malloc (100);
void * to = malloc (100);
if (tfo > from){..}
if (from > to) {
vulnerable_funci();

}

// Vuln2: require handling path explosion
... // deeply nested
vulnerable_func2();

// Vuln3: require structured test inputs
if (input = “{....}"){
// application logic
vulnerable_func3();
}else {
earlier_termination();
}
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O SymLoc: new memory modeling

// Vuln2: require handling path explosion

... // deeply nested
vulnerable_func2();

// Vuln3: require structured test inputs
if (input = “{....}") {
// application logic
vulnerable_func3();
}else {
earlier_termination();
}
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void buggy () {

// Vulnl: require complete memory modeling
void * from = malloc (100);
void * to = malloc (100);

if (to > from) { ... } , O SymLoc: new memory modeling

if (from > to) {
vulnerable_funcl();

}

// Vuln2: require handling path explosion
... // deeply nested
vulnerable_func2();

// Vuln3: require structured test inputs
if (input = “{....}") {
// application logic

| ble f 3(); = = .
Velso e / O Cottontail: smart test input generation

earlier_termination();
}

O FastKLEE: efficient path exploration

O Vital: effective path exploration

But not all vulnerabilities can be caught
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| » Extend SymLoc with more realistic memory modeling

| > Extend Vital into greybox/hybrid as targets to guide directed fuzzing

| » Extend Cottontail to support complex input formats (e.g., binaries)

O Program analysis + GenAl

— New testing engine that can be more general (e.g., across different langauges)
— Combine LLM with formal verification techniques to guarantee the robustness

— Practical hybrid selective symbolic execution for mixed programs

* New software ecosystem (human written code + Al generated code)
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oftware ' | (FSE'22 Demonstration) Objective 2: efficient and o
Vital [3] effective path exploration ":> Vulnerabilities
(under review)
Output
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Research impact

— Four open-sourced tools to foster further symbolic execution research

— 10+ new memory related vulnerabilities are detected (with 7 new CVE assigned)

« All of them have been fixed by developers so far
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