oooooooo
Computing and
Information Systems

SINGAPORE MANAGEMENT

Boosting Symbolic Execution for

Vulnerability Detection

Dissertation Defense

Haoxin Tu

Committee Members: Prof. Lingxiao Jiang, Prof. Xuhua Ding, Prof. David Lo, Prof. Marcel B6hme

May 9th, 2025

School of
Computing and
Information Systems

—
i o SMU
U I n e SINGAPORE MANAGEMENT
UNIVERSITY

School of
Computing and
Information Systems

—
° -
AN
_~
U I n e SINGAPORE MANAGEMENT
UNIVERSITY

O Background
» Software vulnerabilities
» Symbolic execution

School of
Computing and
Information Systems

—
° -~
I A
A~
SINGAPORE MANAGEMENT
UNIVERSITY

O Background
» Software vulnerabilities
» Symbolic execution

O Motivation
» What limitations prevent current symbolic execution for vulnerability detection?
» Thesis statement and research objectives

Outline y
O Background

> Software vulnerabilities
» Symbolic execution

O Motivation
» What limitations prevent current symbolic execution for vulnerability detection?
» Thesis statement and research objectives

O Methodology

» SymlLoc: A new memory model for symbolic execution
» FastKLEE and Vital: Two new path exploration for symbolic execution
» Cottontail: A new structured input generation for symbolic execution

Outline y
O Background

> Software vulnerabilities
» Symbolic execution

O Motivation
» What limitations prevent current symbolic execution for vulnerability detection?
» Thesis statement and research objectives

O Methodology

» SymlLoc: A new memory model for symbolic execution
» FastKLEE and Vital: Two new path exploration for symbolic execution
» Cottontail: A new structured input generation for symbolic execution

O Future work
> Extension of current solutions
» Combine program analysis with GenAl

Ouvutline < SMU
O Background

> Software vulnerabilities
» Symbolic execution

O Motivation
» What limitations prevent current symbolic execution for vulnerability detection?
» Thesis statement and research objectives

O Methodology

» SymlLoc: A new memory model for symbolic execution
» FastKLEE and Vital: Two new path exploration for symbolic execution
» Cottontail: A new structured input generation for symbolic execution

O Future work
> Extension of current solutions
» Combine program analysis with GenAl

O Conclusion and Acknowledgment

oooooooo
- ’ Computing and
Information Systems

https://www.coderus.com/software-101-a-complete-guide-to-the-different-types-of-software/ 5

https://www.coderus.com/software-101-a-complete-guide-to-the-different-types-of-software/

Background: inevitable software defects

School of
Computing and
Information Systems

SINGAPORE MANAGEMENT
UNIVERSITY

\T SMU

50,000

40,000

30,000

20,000

10,000

o A A

Input validation

Open redirect

SSRF

XXE —

CSRF

File inclusion
Directory traversal

Overflow

Memory corruption

2015 2016 2017 2018 2019 2020 2021
Vulnerability By Yeas (2015-2024)

(https://www.cvedetails.com/vulnerabilities-by-years.php)

2022 2023 2024

XSS

SQL injection
Vulnerability By Type (2015-2024)

(https://www.cvedetails.com/vulnerabilities-by-types.php)

https://www.cvedetails.com/vulnerabilities-by-types.php
https://www.cvedetails.com/vulnerabilities-by-years.php

Background: inevitable software defects K 3MU..

School of

Computing and
Information Systems

50,000

40,000

30,000

20,000

10,000

el

I Directory traversal
T T

Input validation

Open redirect

SSRF

XXE

CSRF

File inclusion

Overflow

Memory corruption

2015 2016 2017 2018 2019 2020 2021 2022 2023 2024

Vulnerability By Yeas (2015-2024)

(https://www.cvedetails.com/vulnerabilities-by-years.php)

XSS

SQL injection

Vulnerability By Type (2015-2024)

(https://www.cvedetails.com/vulnerabilities-by-types.php)

— Allbugs
-~ Opt. bugs 200 1

v

—— All bugs
~~- Opt. bugs

® > ® > & ® > o
& & N & & & 0’0 '»“"0 &
® s 3 " P » 3 3 3
(a) GCC

Bug trends on two mainstream compilers (GCC and LLVM)

https://www.cvedetails.com/vulnerabilities-by-types.php
https://www.cvedetails.com/vulnerabilities-by-years.php

Background: inevitable software defects K 3MU..

School of

Computing and
Information Systems

50,000

40,000

30,000

20,000

10,000

o A A

2015 2016 2017 2018 2019 2020 2021 2022 2023 2024
Vulnerability By Yeas (2015-2024)

(https://www.cvedetails.com/vulnerabilities-by-years.php)

—— All bugs
===~ Opt. bugs

Bug trends on two mainstream

Directory traversal

Input validation

Open redirect

SSRF

XXE

CSRF

File inclusion

Overflow

Memory corruption

XSS SQL injection

Vulnerability By Type (2015-2024)

(https://www.cvedetails.com/vulnerabilities-by-types.php)

—— All bugs
~== Opt. bugs

~ o N
b VN N
5 © o N © & > © ¥ > ¥
Qé’) 0"0 6\9 QQ% \99) 0\"5 {7,0 \:\9 0’& ‘e,),
Vv 4‘»0 Vv ,.vQ 19 Vv ,\9 ,\9 Vv 19
(b) LLVM

compilers (GCC and LLVM)

https://www.cvedetails.com/vulnerabilities-by-types.php
https://www.cvedetails.com/vulnerabilities-by-years.php

Background: symbolic execution (1/3) ¢ oMU

UNIVERSITY

0 What is symbolic execution?

> Proposed in 1976 [1], one of the most popular program analysis techniques, which scales

for many software testing and computer security applications

[1] James C. King. 1976. Symbolic execution and program testing. Commun. ACM 19, 7 (July 1976), 385-394. 5

Background: symbolic execution (1/3) < oMU

School of
Computing and
Information Systems

0 What is symbolic execution? |

> Proposed in 1976 [1], one of the most popular program analysis techniques, which scales

for many software testing and computer security applications

Key idea

Test
program

Path
constraints

Symbolic
values

SMT solver

Satisfying
Assignments

Symbolic

[1] James C. King. 1976. Symbolic execution and program testing. Commun. ACM 19, 7 (July 1976), 385-394. 5

oooooooo
Computing and
Information Systems

UNIVERSI

Background: symbolic execution (2/3) Z oMU

0 A toy example |

int bad_abs(int x)
{
if (x <0)
return =x;
if (x ==1234)
return —=x;
return X;

}

oooooooo
Computing and
Information Systems

Background: symbolic execution (2/3) ¢ oMU

UNIVERSITY

0 A toy example |

int bad_abs(int x)
{
if (x <0)

return =x;
if (x ==1234) n:‘>

return —=x;
return X;

}

Background: symbolic execution (2/3)

ot
L=
X SMU
~
SINGAPORE MANAGEMEN
UNIVERSITY

oooooooo

Computing and

"| Information Systems

0 A toy example |

int bad_abs(int x)
{
if (x <0)
return =x;
if (x ==1234)
return —=x;
return X;

}

x <

return -x

Background: symbolic execution (2/3)

School of
Computing and
"| Information Systems

UNIVERSI

0 A toy example |

int bad_abs(int x)
{
if (x <0)
return =x;
if (x ==1234)
return —=x;
return X;

x <

A

return -x

return -x

x !=1234

A 4

return x

Background: symbolic execution (2/3) K 3MU...| comoungana

0 A toy example

int bad_abs(int x)
{
if (x <0)
return =x;
if (x ==1234) |]:" >
return —=x;
return X; , x =|1234 x /=234
} X =-2 ! |
test1.out return -x return x

x = 1234 x=3

test2.out test3.out

Background: symbolic execution (2/3) § 2Mi...| comungana

0 A toy example |

int bad_abs(int x)
{

E—

if (x <0)
return =x;
if (x ==1234)
return —=x;
return X;
}
X <0;

x>=0&& x =1234;
x>=0 && x !1=1234;
(path constraints)

test1.out
test2.out

test3.out
(test cases)

test1.out

x =|1234 x !=\1234
return -x return X
B
test?2.out test3.out

oooooooo
Computing and
Information Systems

Background: symbolic execution (3/3) & SMU_

IIIIIII

School of
Computing and
Information Systems

e
=
X SMU
~
SINGAPORE MANAGEMENT
UNIVERSITY

Background: symbolic execution (3/3)

0 Why symbolic execution could work?

> Execute the program with symbolic inputs
» Represent equivalent execution paths with path constraints

> Solve path constraints to obtain one representative input that exercises the program to go

down that specific path

Background: symbolic execution (3/3) ¢ oMU

0 Why symbolic execution could work?

> Execute the program with symbolic inputs
» Represent equivalent execution paths with path constraints

> Solve path constraints to obtain one representative input that exercises the program to go

down that specific path

Q’CQ + £3 STP —> Worked!

CVC4

Path constraints Constraint Solver

Background: symbolic execution (3/3) ¢ oMU

a0 Why symbolic execution could work?
> Execute the program with symbolic inputs
» Represent equivalent execution paths with path constraints

> Solve path constraints to obtain one representative input that exercises the program to go

down that specific path

@/_ Z3 STP
LQ Sl cved —> Worked!

Path constraints Constraint Solver

» Many applications
— high-coverage test generation, automated debugging, automated program repair, exploit generation,

wireless sensor networks, online gaming, ...

s

>e SMU

~
SINGAPORE MANAGEMENT
UNIVERSITY

Is current symbolic execution effective enough
to detect vulnerabilities in practice?

-

oS SMU

~
SINGAPORE MANAGEMENT
UNIVERSITY

Is current symbolic execution effective enough
to detect vulnerabilities in practice?

NO, and why?

School of
Computing and
Information Systems

—
° <~ r
AN
_~
U I n e SINGAPORE MANAGEMENT
UNIVERSITY

o Motivation
» What limitations prevent current symbolic execution for vulnerability detection?
» Thesis statement and research objectives

School of
Computing and
Information Systems

UNIVERSITY

Motivation Example Z oMU

void buggy () {

// Vulnl: require complete memory modeling
void * from = malloc (100);

void * to = malloc (100);

if (to > from) { ...}

if (from > to) {
vulnerable_funcl();

}

// Vuln2: require handling path explosion
... // deeply nested
vulnerable_func2();

// Vuln3: require structured test inputs

if (input = “{....}7"){
// application logic
vulnerable_func3();

}else {
earlier_termination();

}

}

School of
Computing and
Information Systems

UNIVERSITY

Motivation Example < oMU .

void buggy () {

// Vulnl: require complete memory modeling
void * from = malloc (100);
void * to = malloc (100);
if (to > from){..}
if (from > to) {
vulnerable_funcl();

}

// Vuln2: require handling path explosion
... // deeply nested
vulnerable_func2();

// Vuln3: require structured test inputs

if (input = “{....}7"){
// application logic
vulnerable_func3();

}else {
earlier_termination();

}

}

School of
Computing and
Information Systems

UNIVERSITY

Motivation Example < oMU .

void buggy () {

// Vulnl: require complete memory modeling
void * from = malloc (100);
void * to = malloc (100);
if (to > from){..}
if (from > to) {
vulnerable_funcl();

}

// Vuln2: require handling path explosion
... // deeply nested
vulnerable_func2();

// Vuln3: require structured test inputs

if (input = “{....}7"){
// application logic
vulnerable_func3();

}else {
earlier_termination();

}

}

School of
Computing and

UNIVERSITY Information Systems

Motivation Example Z oMU

void buggy () {

// Vulnl: require complete memory modeling
void * from = malloc (100);
void * to = malloc (100);
if (to > from){..}
if (from > to) {
vulnerable_funcil();

}

// Vuln2: require handling path explosion
... // deeply nested
vulnerable_func2();

// Vuln3: require structured test inputs
if (input = “{....}7"){
// application logic
vulnerable_func3();
}else {
earlier_termination();
}

Motivation Example < oMU

void buggy () {

// Vulnl: require complete memory modeling
void * from = malloc (100);
void * to = malloc (100);
if (to > from){..}
if (from > to) {
vulnerable_funci();

} Can existing symbolic execution effectively

// Vuln2: require handling path explosion deteCt the three VulnerabilitieS?
... // deeply nested

vulnerable_func2();

// Vuln3: require structured test inputs
if (input = “{....}") {
// application logic
vulnerable_func3();
} else {
earlier_termination();
}

Motivation Example < oMU

void buggy () {

// Vulnl: require complete memory modeling
void * from = malloc (100);
void * to = malloc (100);
if (to > from){..}
if (from > to) {
vulnerable_funci();

} Can existing symbolic execution effectively

// Vuln2: require handling path explosion deteCt the three VulnerabilitieS?
... // deeply nested

vulnerable_func2();

// Vuln3: require structured test inputs NO
if (input = “{....}") {
// application logic
vulnerable_func3();
} else {
earlier_termination();
}

Limitation 1: Limited memory modeling & oMU

oooooooo
Computing and
Information Systems

1 How does the engine handle dynamic memory allocations?]

10

Limitation 1: Limited memory modeling oMU

lelelelelelele

f
Computing and
Information Syste

ms

1 How does the engine handle dynamic memory allocations?

1. int* array = malloc (100 * sizeof (int));
2. array [i] = 10; /i is symbolic
3. assert(array[j] != 0); /j is symbolic

10

—
-
e SMU
~
SINGAPORE MANAGEMENT
UNIVERSITY

L How does the engine handle dynamic memory allocations?

1. int* array = malloc (100 * sizeof (int));

2. array [i] = 10; /i is symbolic

3. assert(array[j] != 0); /j is symbolic

> Possible solutions
1. Fully symbolic (ASE’'17)

consider any possible outcome

2. Fully concrete (OSDI’'08)

3. Partial symbolic and concrete (S&P’12)

consider one possible outcome

concretize writes,
Possible ranges to read

|

7

N states

\

| accu rate but not scale)

1 state

. scale but not accurate)

K states

| scale but (in) accurate |

10

Limitation 1: Limited memory modeling

_
=
X SMU
~
SINGAPORE MANAGEMENT
UNIVERSITY

1 How does the engine handle dynamic memory allocations?

1. int* array = malloc (100 * sizeof (int));

2. array [i] = 10; /i is symbolic

3. assert(array[j] != 0); /j is symbolic

> Possible solutions
1. Fully symbolic (ASE’'17)

consider any possible outcome

2. Fully concrete (OSDI’'08)

3. Partial symbolic and concrete (S&P’12)

consider one possible outcome

concretize writes,
Possible ranges to read

J 11

Fixed addresses

Problematic read/write

7

N states

\

| accu rate but not scale)

1 state

. scale but not accurate)

K states

| scale but (in) accurate |

10

Limitation 1: Limited memory modeling o oAL.....| Computing and

UNIVERSITY Information Systems

1 How does the engine handle dynamic memory allocations?

1. int* array = malloc (100 * sizeof (int));
2. array [i] = 10; /i is symbolic
3. assert(array[j] != 0); /j is symbolic

Fixed addresses

Problematic read/write

> Possible solutions
1. FU”y SymbOIiC (ASE“I 7) ([N states A
- consider any possible outcome _accurate but not scale |

—>
2. Fully concrete (OSDI’'08) :>
—

1 state

- consider one possible outcome scale but not accurate
L J

3. Partial symbolic and concrete (S&P’12)
« concretize writes,
- Possible ranges to read

K states
| scale but (in) accurate |

We need a more complete and precise memory modeling !

School of
Computing and
Information Systems

UNIVERSITY

Motivation Example < oMU .

void buggy () {

// Vulnl: require complete memory modeling
void * from = malloc (100);
void * to = malloc (100);
if (to > from){..}
if (from > to) {
vulnerable_funcl();

}

// Vuln2: require handling path explosion
... // deeply nested
vulnerable_func2();

// Vuln3: require structured test inputs
if (input = “{....}7"){
// application logic
vulnerable_func3();
}else {
earlier_termination();
}

Motivation Example

void buggy () {

// Vulnl: require complete memory modeling
void * from = malloc (100);
void * to = malloc (100);

if (to > from){..}
if (from > to){
vulnerable_funcl();

}

// Vuln2: require handling path explosion
... // deeply nested
vulnerable_func2();

// Vuln3: require structured test inputs
if (input = “{....}") {
// application logic
vulnerable_func3();
} else {
earlier_termination();
}

_
=
X SMU
~
SINGAPORE MANAGEMENT
UNIVERSITY

Can existing symbolic execution effectively
detect the three vulnerabilities?

12

Motivation Example

void buggy () {

// Vulnl: require complete memory modeling
void * from = malloc (100);
void * to = malloc (100);

if (to > from){..}
if (from > to){
vulnerable_funcl();

}

// Vuln2: require handling path explosion
... // deeply nested
vulnerable_func2();

// Vuln3: require structured test inputs
if (input = “{....}") {
// application logic
vulnerable_func3();
} else {
earlier_termination();
}

_
=
X SMU
~
SINGAPORE MANAGEMENT
UNIVERSITY

Can existing symbolic execution effectively
detect the three vulnerabilities?

NO, two remaining

12

School of
Computing and
Information Systems

Limitation 2: path explosion < oMU

O How does symbolic execution deal with path explosion?]

Limitation 2: path explosion < oMU

O How does symbolic execution deal with path explosion?

void process (char input [131) { * Exponentially many execution paths
int counter = 0; 3
if (input[0] == 'a') counter++; A v
if (input[l] == 'b') counter++; p—% .) 7 %
if (input[2] == 'c') counter++; - \ \ \
if (counter >= 3) success|(); al

error () ; =

} 4 conditional nodes 16 (2% execution paths

—
-
e SMU
~
SINGAPORE MANAGEMENT
UNIVERSITY

L How does symbolic execution deal with path explosion?

P : « Exponentially many execution paths
void process (char input[3]) { P Al 5

int counter = 0; =
if (input[0] == 'a') counter++; o
if (input[l] == 'b') counter++; [:i> »
if (input[2] == 'c') counter++; -
if (counter >= 3) success|():; -
error () ; -

} 4 conditional nodes 16 (2%) execution paths

» Efficient solutions
> With specialized optimizations (HotOS’13)
> With code transformation (ECOOP’18)

SINGAT

L How does symbolic execution deal with path explosion?

void process (char input [131) { * Exponentially many execution paths
int counter = 0; =
if (input[0] == 'a') counter++; o
if (input[l] == 'b') counter++; [:i> .
if (input[2] == 'c') counter++; -
if (counter >= 3) success|():; "
error () ; -
} 4 conditional nodes 16 (2%) execution paths
> Efficient solutions > Effective solutions
> With specialized optimizations (HotOS’13) » Random search (DFS and BFS)
> With code transformation (ECOOP’18) > Heuristic guided search (OSDI'08)

» coverage, instruction, etc.

13

Limitation 2: path explosion

_
=
X SMU
~
SINGAPORE MANAGEMENT
UNIVERSITY

L How does symbolic execution deal with path explosion?

void process (char input[3]) {

int counter = 0;

if (input[0] == 'a') counter++;

if (input[l] == 'b') counter++; [:i>
if (input[2] == 'c') counter++;

if (counter >= 3) success|();
error () ;

> Efficient solutions

> With specialized optimizations (HotOS’13)
> With code transformation (ECOOP’18)

« Exponentially many execution paths

4 conditional nodes 16 (2% execution paths

> Effective solutions

» Random search (DFS and BFS)
> Heuristic guided search (OSDI'08)

» coverage, instruction, etc.

Inefficient path No unified
search targets

Ineffective path

search

13

oooooooo
Computing and
Information Systems

Path explosion visualization QR

LA

1l _ ’!ﬂui
1 |

==
—=——
P—
————
:——:;\—n-—._
=
b

Vulnerable path

s

oS SMU

~
SINGAPORE MANAGEMENT
UNIVERSITY

We need a more efficient and effective path
exploration !

14

School of
Computing and

UNIVERSITY Information Systems

Motivation Example Z oMU

void buggy () {

// Vulnl: require complete memory modeling
void * from = malloc (100);
void * to = malloc (100);
if (to > from){..}
if (from > to) {
vulnerable_funcil();

}

// Vuln2: require handling path explosion
... // deeply nested
vulnerable_func2();

// Vuln3: require structured test inputs
if (input = “{....}7"){
// application logic
vulnerable_func3();
}else {
earlier_termination();
}

Motivation Example

void buggy () {

// Vulnl: require complete memory modeling
void * from = malloc (100);
void * to = malloc (100);

if (to > from){..}
if (from > to){
vulnerable_funcl();

}

// Vuln2: require handling path explosion
... // deeply nested
vulnerable_func2();

// Vuln3: require structured test inputs
if (input = “{....}") {
// application logic
vulnerable_func3();
} else {
earlier_termination();
}

_
=
X SMU
~
SINGAPORE MANAGEMENT
UNIVERSITY

Can existing symbolic execution effectively
detect the three vulnerabilities?

16

Motivation Example < oMU

void buggy () {

// Vulnl: require complete memory modeling
void * from = malloc (100);
void * to = malloc (100);

if (to > from){..}
if (from > to){
vulnerable_funcl();

} Can existing symbolic execution effectively
// Vuln2: require handling path explosion ' deteCt the three VulnerabilitieS?

... // deeply nested
vulnerable_func2();

// Vuln3: require structured test inputs NO, one remalnlng Stlll
if (input = “{....}") {
// application logic
vulnerable_func3();
} else {
earlier_termination();
}

School of
Computing and
Information Systems

Limitation 3: structured input generation § MY....

1 How does symbolic execution generate structured test cases?]

..

Software
(From SE) :
Parsing E Application | i, £
. .E> Code |~ (=] | Logic Code Q
: Internal :
(Bytedevel) MPUC | ﬂ Retessocsin | Output

Input Error

Limitation 3: structured input generation §3MU...

] How does symbolic execution generate structured test cases?

Software
(From SE) ;
Parsing E Application | i, ¢
. . E> Code = = Logic Code E:) E
(B Input 5 incerrel, . Output
yte-level)] H Representation |
Input Error

> Possible solutions
» Grammar-based generation (PLDI'08)
« Use grammar specifications to guide generation
> Token-level symbolization (ISSTA’21)

« Treating tokens rather than bytes as symbolic data

lelelelelelele

Limitation 3: structured input generation § Y.

] How does symbolic execution generate structured test cases?

Software
(From SE) E
Parsing E Application | i, ¢
. . E> Code = = Logic Code E:) E
(B Input E incerrel, . Output
yte-level)] ﬂ Representation !
Input Error

> Possible solutions

» Grammar-based generation (PLDI'08) - Structure-agnostic

ﬁ path selection
« Use grammar specifications to guide generation Ineffective

constraint solving
> Token-level symbolization (ISSTA’21)

« Treating tokens rather than bytes as symbolic data

School of
Computing and
Information Systems

Limitation 3: structured input generation § MY....

1 How does symbolic execution generate structured test cases?]

..

Software
(From SE) 5
Parsing E Application | i, ¢
. . E> Code = = Logic Code E:) é
Input i inteimal, . Output
(Byte-level)] ﬂ Representation |
Input Error

> Possible solutions

> Grammar-based generation (PLDI'08) - Structure-agnostic

path selection
« Use grammar specifications to guide generation Ineffective

constraint solving
> Token-level symbolization (ISSTA’21)

« Treating tokens rather than bytes as symbolic data

We need a new structured test case generation strategy !

School of
Computing and
Information Systems

Thesis statement and research objectives & 3MU...

Q Statement: This thesis aims to boost symbolic execution by designing new solutions to
alleviate three key limitations in memory modeling/path exploration/test input generation,

for efficient and effective automatic vulnerability detection.

19

Summary of Key Research Problems

School of
Computing and
Information Systems

£ SMU

SINGAPORE MANAGEMENT
UNIVERSITY

How can we support a more complete memory model

for dynamic memory allocations ?

Fixed addresses

pr -
stat stat stat
a=expr;b=exr:ex4\:

Inefficient
path search

No unified
targets

-

Ineffective
constraint solving

Structure-agnostic
path selection

%, 4 How can we perform concolic execution to generate

$
O 9o, %,
b&§9 Path Q’)Q ’@O' highly structured test inputs for systematically
é{&&ob explosion "6‘,}. /}% testing parsing programs?
. (o)
W challenge 2 %
)

Undefined

How can we efficiently and effectively search vulnerable paths in
Unspecified

rather complex software systems?

Ineffective path
search

56

Thesis statement and research objectives § 5.

UNIVERSITY

Q Statement: This thesis aims to boost symbolic execution by designing new solutions to
alleviate three key limitations in memory modeling/path exploration/test input generation,

for efficient and effective automatic vulnerability detection.

USr’]zfé\:v_T_reest ":> IIZ> Vulnerabilities

Input Output

[1] Haoxin Tu, Lingxiao Jiang, and et.al, “Concretely Mapped Symbolic Memory Locations for Memory Error Detection” (IEEE TSE).

[2] Haoxin Tu, Lingxiao Jiang, and et.al,, “FastKLEE: Faster Symbolic Execution via Reducing Redundant Bound Checking of Type-Safe Pointers”, in Tool Demonstrations Track of FSE 2022.
[3] Haoxin Tu, Lingxiao Jiang and et.al,. "Vital: Vulnerability-Oriented Symbolic Execution via Type-Unsafe Pointer-Guided Monte Carlo Tree Search." arXiv:2408.08772 (2024).

[4] Haoxin Tu, Seongmin Lee, and et.al. "Large Language Model-Driven Concolic Execution for Highly Structured Test Input Generation." arXiv:2504.17542 (2025).

19

Thesis statement and research objectives § 5.

UNIVERSITY

Q Statement: This thesis aims to boost symbolic execution by designing new solutions to
alleviate three key limitations in memory modeling/path exploration/test input generation,

for efficient and effective automatic vulnerability detection.

SymLoc [1] Objective 1: complete and
(TSE'24) precise memory model

U?\zfé\:v?';est “:> Il:> Vulnerabilities

Input Output

[1] Haoxin Tu, Lingxiao Jiang, and et.al, “Concretely Mapped Symbolic Memory Locations for Memory Error Detection” (IEEE TSE).

[2] Haoxin Tu, Lingxiao Jiang, and et.al,, “FastKLEE: Faster Symbolic Execution via Reducing Redundant Bound Checking of Type-Safe Pointers”, in Tool Demonstrations Track of FSE 2022.
[3] Haoxin Tu, Lingxiao Jiang and et.al,. "Vital: Vulnerability-Oriented Symbolic Execution via Type-Unsafe Pointer-Guided Monte Carlo Tree Search." arXiv:2408.08772 (2024).

[4] Haoxin Tu, Seongmin Lee, and et.al. "Large Language Model-Driven Concolic Execution for Highly Structured Test Input Generation." arXiv:2504.17542 (2025).

19

Thesis statement and research objectives § 5.

UNIVERSITY

Q Statement: This thesis aims to boost symbolic execution by designing new solutions to
alleviate three key limitations in memory modeling/path exploration/test input generation,

for efficient and effective automatic vulnerability detection.

SymLoc [1] Objective 1: complete and
(TSE24) precise memory model

| FastKLEE [2] 3
Software | (FSE’'22 Demonstration) Objective 2: efficient and “:>
Under Test Vital [3] effective path exploration |

| (under review)

Vulnerabilities

Input Output

[1] Haoxin Tu, Lingxiao Jiang, and et.al, “Concretely Mapped Symbolic Memory Locations for Memory Error Detection” (IEEE TSE).

[2] Haoxin Tu, Lingxiao Jiang, and et.al,, “FastKLEE: Faster Symbolic Execution via Reducing Redundant Bound Checking of Type-Safe Pointers”, in Tool Demonstrations Track of FSE 2022.
[3] Haoxin Tu, Lingxiao Jiang and et.al,. "Vital: Vulnerability-Oriented Symbolic Execution via Type-Unsafe Pointer-Guided Monte Carlo Tree Search." arXiv:2408.08772 (2024).

[4] Haoxin Tu, Seongmin Lee, and et.al. "Large Language Model-Driven Concolic Execution for Highly Structured Test Input Generation." arXiv:2504.17542 (2025).

< SMU

SINGAPORE MANAGEMENT
UNIVERSITY

Q Statement: This thesis aims to boost symbolic execution by designing new solutions to
alleviate three key limitations in memory modeling/path exploration/test input generation,

for efficient and effective automatic vulnerability detection.

SymLoc [1] Objective 1: complete and
(TSE24) precise memory model

| FastKLEE [2] 3

Software | (FSE'22 Demonstration) Objective 2: efficient and ":>

Under Test Vital [3] effective path exploration |
| (under review)

Vulnerabilities

Input _ Output
| Cottontail [4] Objective 3: effective §
(under review) structured input generation

[1] Haoxin Tu, Lingxiao Jiang, and et.al, “Concretely Mapped Symbolic Memory Locations for Memory Error Detection” (IEEE TSE).

[2] Haoxin Tu, Lingxiao Jiang, and et.al,, “FastKLEE: Faster Symbolic Execution via Reducing Redundant Bound Checking of Type-Safe Pointers”, in Tool Demonstrations Track of FSE 2022.
[3] Haoxin Tu, Lingxiao Jiang and et.al,. "Vital: Vulnerability-Oriented Symbolic Execution via Type-Unsafe Pointer-Guided Monte Carlo Tree Search." arXiv:2408.08772 (2024).

[4] Haoxin Tu, Seongmin Lee, and et.al. "Large Language Model-Driven Concolic Execution for Highly Structured Test Input Generation." arXiv:2504.17542 (2025).

School of
Computing and
Information Systems

UNIVERSITY

Motivation Example (with our solutions) § M.

void buggy () {

// Vulnl: require complete memory modeling
void * from = malloc (100);
void * to = malloc (100);
if (to > from){..}
if (from > to) {
vulnerable_funcl();

}

// Vuln2: require handling path explosion
... // deeply nested
vulnerable_func2();

// Vuln3: require structured test inputs
if (input = “{....}7"){
// application logic
vulnerable_func3();
}else {
earlier_termination();
}

Motivation Example (with our solutions) &MU

School of
Computing and
Information Systems

void buggy () {

// Vulnl: require complete memory modeling
void * from = malloc (100);
void * to = malloc (100);

if (to > from){..}
if (from > to) {
vulnerable_funcil();

}

// Vuln2: require handling path explosion
... // deeply nested
vulnerable_func2();

// Vuln3: require structured test inputs
if (input = “{....}7"){
// application logic

vulnerable_func3();
} else {

earlier_termination();
}

Can our boosted symbolic execution
effectively detect the three vulnerabilities?

YES

20

Ouvutline

0 Methodology

> SymLoc: A new memory model for symbolic execution

_
=
X SMU
~
SIN ANAGEMENT

GAPORE M.
UNIVERSITY

21

A New Memory Model: insights

ooooo

22

A New Memory Model: insights

» Three fundamental designs are required

SIN
UNIVERSITY

22

A New Memory Model: insights

» Three fundamental designs are required

A. Symbolization of addresses and modeling them into path constraints

SIN
UNIVERSITY

22

A New Memory Model: insights

» Three fundamental designs are required
A. Symbolization of addresses and modeling them into path constraints

B. Practical read/write operation from/to symbolic addresses

A/ NS

7

SR
RE

22

A New Memory Model: insights

» Three fundamental designs are required
A. Symbolization of addresses and modeling them into path constraints
B. Practical read/write operation from/to symbolic addresses

C. Effectively tracking the uses of symbolic addresses

>

S
%=

22

A New Memory Model: insights $ oMU

» Three fundamental designs are required
A. Symbolization of addresses and modeling them into path constraints
B. Practical read/write operation from/to symbolic addresses

C. Effectively tracking the uses of symbolic addresses

» Existing approaches are difficult to satisfy all above requirements

Rethinking Pointer Reasoning
in Symbolic Execution

— KLEE and Symsize (FSE’21): none of the requirements can be satisfied st sl

Depastment of Compeser, Control, and Management Enginecring

Relocatable Addressing Model for Symbolic Execution

- RAM (ICSE’18): satisfies requirements #B and partially #A but not #C iRy
. , . . . A Boun::;m:::;:;ic-size Model for Syr::n:;;ucl:xecution
— Memsight (ASE’17): satisfies requirements #A and #B but not #C gy

22

Solution: SymlLoc (1/3)

ooooo

70

Solution: SymlLoc (1/3)

ot
L=
X SMU
~
SINGAPORE MANAGEMENT
UNIVERSITY

School of
Computing and
Information Systems

High-level Idea |

(used for state forking)

Symbolic address

a —— symlLocMap

0x555555784d654

(used for memory read/write)

71

Solution: Symloc (1/3)

High-level Idea

(used for state forking)

»

Symbolic address

a —— symLocMap

0x555555784d654

(used for memory read/write)

®

True

A 4

<>

False

True branch False branch

'

'

_
=
X SMU
~
SINGAPORE MANAGEMENT
UNIVERSITY

Two new techniques
»Technique 1: new address

symbolization

Solution: Symloc (1/3)

High-level Idea

(used for state forking)

b
Ll

Symbolic address

symLocMap

a —»

0x555555784d654

®

True False

<

True branch False branch

' '

_
=
X SMU
~
SINGAPORE MANAGEMENT
UNIVERSITY

Two new techniques
»Technique 1: new address
symbolization

»Technique 2: symbolic

memory operation/tracking

'
L

©

symbolic read

Buffer

(used for memory read/write)

N

symbolic write

symbolic memory operations

®

Buffer

o

symbolic memory tracking

73

Solution: SymlLoc (2/3)

ooooo

24

Solution: SymlLoc (2/3)

SINGAPORE MANAGEMENT

School of
Computing and
Information Systems

®

True

A 4

<>

False

True branch False branch

!

'

24

0 New address symbolization

m Symbolic addressing model

> Encoding the symbolic address into path

constraints

—
-
e SMU
~
SINGAPORE MANAGEMENT
UNIVERSITY

Existing: (addr, size,arry) € N*" X N* x A

Ours: (symAddr,size,arry) e N*" x N" x A

True

\ 4

S

False

True branch

False branch

'

'

24

0 New address symbolization

m Symbolic addressing model

> Encoding the symbolic address into path

constraints

True

\ 4

S

False

True branch

False branch

'

'

—
.
e SMU
~
SINGAPORE MANAGEMENT
UNIVERSITY

Existing: (addr, size,arry) € N*" X N* x A

Ours: (symAddr,size,arry) e N*" x N" x A

= Input

> A set of variables to return from malloc function

m Output
> A symbolic-concrete memory map (symLocMap)
> Will be used in the latter phase

24

Solution: SymlLoc (3/3)

ooooo

25

School of
Computing and
Information Systems

Solution: SymLoc (3/3) NSMU

UNIVERSITY

@ symbolic read @
1F

Buffer + Buffer
b
symbolic write V4

symbolic memory operations symbolic memory tracking

Solution: SymLoc (3/3) Z oMU

O Symbolic memory operation and tracking

= Input

Algorithm 1: Symbolic memory operations and tracking

Input: the map symLocMap, a symbolic expression symExpr,

and a function func being executed > symLocMap, a symbolic expression, and a function
Output: a concrete or symbolic expression, or an error
1 conExpr +— () // initialize a concrete expression
2 FreeList +— () / / initialize a list to store freed objects
3 Function SymAddrRes (symLocMap, symExpr, func): u O u t p Ut

ﬂ > A concrete address or normal symbolic variable or a bug

@ symbolic read @
“r
Buffer + Buffer

O
symbolic write v

symbolic memory operations symbolic memory tracking

25

< SMU

SINGAPORE MANAGEMENT
UNIVERSITY

O Symbolic memory operation and tracking

= Input

Algorithm 1: Symbolic memory operations and tracking

Input: the map symLocMap, a symbolic expression symExpr, .] .
and a function func being executed > symLocMap, a symbolic expression, and a function
Output: a concrete or symbolic expression, or an error
1 conExpr «—0 / / initialize a concrete expression

2 FreeList +— () / / initialize a list to store freed objects B O utp ut
3 Function SymAddrRes (symLocMap, symExpr, func):

ﬂ > A concrete address or normal symbolic variable or a bug
0 smbot o ® m Tracking example
Bger - Buffer = > A memory address is symbolized as “sym_a”
mbolic wri @ . T ” “ ”
SAESENISE | | > If the freed object is “sym_a” or “sym_a + 100
symbolic memory operations symbolic memory tracking

« Indicating UAF bugs

25

SymLloc: Evaluation Results & Takeaways

oooooooo

Computing and

“| Information Systems

26

School of
Computing and
Information Systems

SymlLoc: Evaluation Results & Takeaways & 2MU...

RQ1: How does SymLoc perform in
detecting spatial memory errors?

— SymLoc could cover 15% and 48% more
unique lines of code on average than the two

baseline approaches.

— SymLoc could detect 169% and 218% more
spatial memory errors than the two baseline

approaches.

— Two new vulnerabilities have been detected

26

SymLloc: Evaluation Results & Takeaways & MUl

School of
Computing and
Information Systems

RQ1: How does SymLoc perform in
detecting spatial memory errors?

RQ2: How does SymLoc perform in
detecting temporal memory errors?

— SymLoc could cover 15% and 48% more
unique lines of code on average than the two

baseline approaches.

— SymLoc could detect 169% and 218% more
spatial memory errors than the two baseline

approaches.

— Two new vulnerabilities have been detected

SymLoc has an overall better temporal memory
error detection capability for detecting UAF and
DoF errors than static, dynamic, and symbolic

execution-based approaches.

aces) I

0 20 40 60 80 100 120 140
The number of detected (ground truth) use-after-free bugs

26

Symloc: Evaluation Results & Takeaways § 4%

School of
Computing and
Information Systems

UNIVERSITY

RQ1: How does SymLoc perform in
detecting spatial memory errors?

RQ2: How does SymLoc perform in
detecting temporal memory errors?

— SymLoc could cover 15% and 48% more
unique lines of code on average than the two

baseline approaches.

— SymLoc could detect 169% and 218% more
spatial memory errors than the two baseline

approaches.

— Two new vulnerabilities have been detected

SymLoc has an overall better temporal memory
error detection capability for detecting UAF and
DoF errors than static, dynamic, and symbolic

execution-based approaches.

acee)]

0 20 40 60 80 100 120 140
The number of detected (ground truth) use-after-free bugs

« Takeaways

— A more complete memory model could help detect tricky vulnerabilities

26

0 Methodology

> FastKLEE and Vital: Two new path exploration for symbolic execution

—
.
e SMU
~
SINGAPORE MANAGEMENT
UNIVERSITY

27

oooooooo
Computing and
Information Systems

Two New Path Explorations (1/2) ¢ oMU

‘ i
j i !
t m i (‘(: ;} | 1
'y | i
@th il
_—

Vulnerable path

e —
——

s

oS SMU

~
SINGAPORE MANAGEMENT
UNIVERSITY

How to search vulnerable paths in
rather complex software systems?

28

Two New Path Explorations (1/2) < SMU | Computing ana

UNIVERSITY

How to search vulnerable paths in
rather complex software systems?

Direction 1: Can Direction 2: Can

we do the path we search vuln-
search faster? erable paths first?
(FastKLEE) (Vital)

Two New Path Explorations (1/2) & oMU | Computingana

How to search vulnerable paths in
rather complex software systems?

Direction 1: Can
we do the path
search faster?

(FastKLEE)

et J

School of
Computing and
Information Systems

Efficient Path Exploration: Rethinking Z oMU

Intermediate Traditional
M Representation(IR) Symbolic Execution

School of
Computing and
Information Systems

Efficient Path Exploration: Rethinking ¢ SMU_

Symbolic Execution

UNIVERSITY
Source code

Intermediate Traditional
Representation(IR)

Interpretation

School of
Computing and
Information Systems

Efficient Path Exploration: Rethinking Z oMU

Intermediate Traditional
Representation(IR) Symbolic Execution

UNIVERSITY
Source code

(1) Observation

— The number of interpreted instructions tends to
be huge (several billion only in one hour run)

Elapsed: 01: 00: 04

KLEE: done: explored paths = 125017

KLEE: done: avg. constructs per query = 74
KLEE: done: total queries = 8859

KLEE: done: valid queries = 6226

KLEE: done: invalid queries = 2633

KLEE: done: query cex = 8859

KLEE: done: total instructions = 605113213|
KLEE: done: completed paths 125017
KLEE: done: generated tests 65

Interpretation

Efficient Path Exploration: Rethinking $ oMU

UNIVERSITY
Source code

Intermediate Traditional
Representation(IR) Symbolic Execution

(1) Observation (2) Overheads in current symbolic execution
— The number of interpreted instructions tends to — The color depth represents the overheads of
be huge (several billion only in one hour run) an interpreted instruction

— All instructions are equal

Elapsed: 01: 00: 04

KLEE: done: explored paths = 125017

KLEE: done: avg. constructs per query = 74
KLEE: done: total queries = 8859

KLEE: done: valid queries = 6226

KLEE: done: invalid queries = 2633 —

KLEE: done: query cex = 8859

KLEE: done: total instructions = 605113213|
KLEE: done: completed paths 125017
KLEE: done: generated tests 65

Interpretation

ooooooooo
Computing and
Information Systems

Efficient Path Exploration: Rethinking MU

Can we reduce the overhead of interpreted instructions

for faster symbolic execution?

29

—

Solution: FastKLEE (1/2) L

UNIVERSITY

School of
Computing and
Information Systems

- Key insights

[1] Ccured: George C. Necula, Jeremy Condit, Matthew Harren, Scott McPeak, and Westley Weimer. 2005. CCured: type-safe retrofitting of legacy software. ACM Trans. Program. Lang. Syst. 27, 3 (May 2005), 477-526.

30

Solution: FastKLEE (1/2) ¢ SMU_

UNIVERSITY

School of
Computing and
Information Systems

- Key insights
— Only a small portion of memory-related
instructions need bound checking

[1] Ccured: George C. Necula, Jeremy Condit, Matthew Harren, Scott McPeak, and Westley Weimer. 2005. CCured: type-safe retrofitting of legacy software. ACM Trans. Program. Lang. Syst. 27, 3 (May 2005), 477-526.

30

& SMU

SINGAPORE MANAGEMENT
UNIVERSITY

- Key insights
— Only a small portion of memory-related
instructions need bound checking
— Reduce the interpreting overhead of the
most frequently interpreted ones (i.e.,
load/store instructions)

[1] Ccured: George C. Necula, Jeremy Condit, Matthew Harren, Scott McPeak, and Westley Weimer. 2005. CCured: type-safe retrofitting of legacy software. ACM Trans. Program. Lang. Syst. 27, 3 (May 2005), 477-526.

30

Solution: FastKLEE (1/2) G SMU_

u T\I\FR ITY

- Key insights
— Only a small portion of memory-related
instructions need bound checking
— Reduce the interpreting overhead of the
most frequently interpreted ones (i.e.,
load/store instructions)
— Inspired by Type Inference system [1]

Inference algorithm

SAFE
Pointer kinds c + SEQ
WILD
0101001010101

‘ WILD 1010000101110

. Run-time cheoks _ (1010100160101
———————|e110101010110
C 1000101010101
0101101111001
e010101110101

Type checker x SAFE/SEQ Memory-safe

[1] Ccured: George C. Necula, Jeremy Condit, Matthew Harren, Scott McPeak, and Westley Weimer. 2005. CCured: type-safe retrofitting of legacy software. ACM Trans. Program. Lang. Syst. 27, 3 (May 2005), 477-526.

30

< SMU

SINGAPORE MANAGEMENT
UNIVERSITY

- Key insights - Advantage: overheads in FastKLEE

— Only a small portion of memory-related — Interpretation overheads for some instructions
instructions need bound checking are reduced

— Reduce the interpreting overhead of the
most frequently interpreted ones (i.e.,
load/store instructions)

— Inspired by Type Inference system [1]

Inference algorithm

SAFE
Pointer kinds c + SEQ
WILD
0101001010101

| WILD 1010000101110

Run time checks 1010100100101

— (0110101010110

C 1000101010101
0101101111001

0010101110101

Type checker x SAFE/SEQ Memory-safe

\ ">~ Reduced overheads

<R

[1] Ccured: George C. Necula, Jeremy Condit, Matthew Harren, Scott McPeak, and Westley Weimer. 2005. CCured: type-safe retrofitting of legacy software. ACM Trans. Program. Lang. Syst. 27, 3 (May 2005), 477-526.

30

Solution: FastKLEE (2/2)

IIIIIIII

School of

Computing and

"| Information Systems

31

Solution: FastKLEE (2/2)

£ SMU

SINGAPORE MANAGEMENT
UNIVERSITY

School of
Computing and
Information Systems

Intermediate

T .
Source code Representation(IR)

>

Traditional
Symbolic Execution

o

31

Solution: FastKLEE (2/2)

£ SMU

SINGAPORE MANAGEMENT
UNIVERSITY

School of
Computing and
Information Systems

Intermediate

T .
Source code Representation(IR)

Phase |

>

Traditional
Symbolic Execution

Phase Il

o

31

Phase I: Introduce a Type Inference System to classify memory-related instruction types

< SMU

SINGAPORE MANAGEMENT
UNIVERSITY

Intermediate

_ .
Source code Representation(IR)

- Traditional
Symbolic Execution

Type Inference
System

A CheckList

»
»

Phase |

Phase Il

Unsafe memory instructions will be stored in CheckList

31

Phase I: Introduce a Type Inference System to classify memory-related instruction types

Intermediate

T .
Source code Representation(IR)

e

Type Inference
System

A CheckList

< SMU

SINGAPORE MANAGEMENT
UNIVERSITY

Traditional
Symbolic Execution

Phase |

R Fast
Symbolic Execution

Phase Il

Unsafe memory instructions will be stored in CheckList

Phase II: Conduct Customized Memory Operation in Fast symbolic execution

Only perform checking for Unsafe memory instructions during interpretation

31

Two New Path Explorations (2/2) < oMU

UNIVERSITY

School of
Computing and
Information Systems

How to search vulnerable paths in
rather complex software systems?

Direction 2: Can
we search vuln-
erable paths first?
(Vital)

32

Insight 1: approximate a vulnerable path < OMU_

UNIVERSITY

School of
Computing and
Information Systems

[1] Ccured: George C. Necula, Jeremy Condit, Matthew Harren, Scott McPeak, and Westley Weimer. 2005. CCured: type-safe retrofitting of legacy software. ACM Trans. Program. Lang. Syst. 27, 3 (May 2005), 477-526.

33

Insight 1: approximate a vulnerable path < oMU

UNIVERSITY

School of
Computing and
Information Systems

- Revisit type inference (Ccurd [1])

[1] Ccured: George C. Necula, Jeremy Condit, Matthew Harren, Scott McPeak, and Westley Weimer. 2005. CCured: type-safe retrofitting of legacy software. ACM Trans. Program. Lang. Syst. 27, 3 (May 2005), 477-526.

33

Insight 1: approximate a vulnerable path < SMU_

UY\IV

- Revisit type inference (Ccurd [1])

Inference algorithm
SAFE
Pointer kinds C + SEQ
WILD
0101001010101
WILD 1010000101110

Run-time checks 1010100100101
0110101010110
c 1000101010101
0101101111001
0010101110101
x SAFE/SEQ

Memory-safe
Test program Type checker R

[1] Ccured: George C. Necula, Jeremy Condit, Matthew Harren, Scott McPeak, and Westley Weimer. 2005. CCured: type-safe retrofitting of legacy software. ACM Trans. Program. Lang. Syst. 27, 3 (May 2005), 477-526.

Insight 1: approximate a vulnerable path < oMU

UNIVERSITY

- Revisit type inference (Ccurd [1])

Inference algorithm

Pointer kinds

C

Test program

c +

SAFE
SEQ
WILD

|

%

Type checker

WILD

, Run-time checks

0101001010101
1010000101110
1010100100101
0110101010110
1000101010101
0101101111001
0010101110101

Memory-safe

Observation: Memory errors can

only happen in unsafe pointer
operations (SEQ/WILD)!

[1] Ccured: George C. Necula, Jeremy Condit, Matthew Harren, Scott McPeak, and Westley Weimer. 2005. CCured: type-safe retrofitting of legacy software. ACM Trans. Program. Lang. Syst. 27, 3 (May 2005), 477-526.

33

Revisit type inference (Ccurd [1])

Inference algorithm

SAFE
Pointer kinds C + SEQ
WILD
‘ ‘ WILD

Insight 1: approximate a vulnerable path

< SMU

SINGAPORE MANAGEMENT
UNIVERSITY

int * p = malloc (100);

*(p + “input’) = 1; I/ unsafe pointer operation

Type checker

0101001010101
1010000101110
1010100100101
0110101010110
1000101010101
0101101111001
0010101110101

E l Run-time checks
< x SAFE/SEQ

Test program

Memory-safe

Observation: Memory errors can

only happen in unsafe pointer
operations (SEQ/WILD)!

[1] Ccured: George C. Necula, Jeremy Condit, Matthew Harren, Scott McPeak, and Westley Weimer. 2005. CCured: type-safe retrofitting of legacy software. ACM Trans. Program. Lang. Syst. 27, 3 (May 2005), 477-526.

33

School of
Computing and

Insight 1: approximate a vulnerable path < oMU

UNIVERS! v Information Systems
- Revisit type inference (Ccurd [1]) int * p = malloc (100);
i *(p + “input’) = 1; // unsafe pointer operation
SAFE
Pointer kinds SEQ
% c + WILD
‘ WILD 0101001010101
1010000101110
Observation: Memory errors can

only happen in unsafe pointer
operations (SEQ/WILD)!

Run-time checks |1010100100101
/ 0110101010110
C 1000101010101
0101101111001
0010101110101

x SAFE/SEQ

Memory-safe
Test program Type checker L

We can exploit such information from type inference to guide the path search!

[1] Ccured: George C. Necula, Jeremy Condit, Matthew Harren, Scott McPeak, and Westley Weimer. 2005. CCured: type-safe retrofitting of legacy software. ACM Trans. Program. Lang. Syst. 27, 3 (May 2005), 477-526.

oooooooo
Computing and
Information Systems

Insight 2: search the path smartly Z oMy

Insight 2: search the path smarily

£ SMU

SINGAPORE MANAGEMENT
UNIVERSITY

School of
Computing and
Information Systems

00:01:00

34

School of
Computing and
Information Systems

UNIVERSITY

Insight 2: search the path smartly SR

Run continuously in the allotted time

|

" Selection | Expansion —{Simulation |~/ Backpropagation |

C go O
: O

Monte Carlo Tree Search (MCfS) in AlphaGo

34

School of
Computing and
Information Systems

Insight 2: search the path smartly ¢ oMU

Run continuously in the allotted time

|

" Selection | Expansion —{Simulation |~/ Backpropagation |

-
C go O
: O

Monte Carlo Tree Search (MCfS) in AlphaGo

- Analogy: Game tree (win) Execution tree (a vulnerable path)

We can use MCTS to guide the path search towards the vulnerable paths!

34

Insight 2: search the path smartly ¢ oMY

School of
Computing and
Information Systems

Run continuously in the allotted time

' Selection > Expansion | Simulation '~ Backpropagation |

ole]e
O

N

Monte Carlo Tree Search (MCfS) in AlphaGo

- Analogy: Game tree (win)

Execution tree (a vulnerable path)

We can use MCTS to guide the path search towards the vulnerable paths!

Key question 1: How to select/expand tree nodes?

Key question 2: How to evaluate rewards?

34

—
J

Solution: Vital (vulnerability-oriented MCTS) § 2MY....

UNIVERSITY

School of
Computing and
Information Systems

[1] Ccured: George C. Necula, Jeremy Condit, Matthew Harren, Scott McPeak, and Westley Weimer. 2005. CCured: type-safe retrofitting of legacy software. ACM Trans. Program. Lang. Syst. 27, 3 (May 2005), 477-526.

118

u

Solution: Vital (vulnerability-oriented MCTS) & 2MU...

School of
Computing and
Information Systems

9 How to select/expand tree nodes?
— Use the number of unsafe pointers

— Fact: vulnerabilities always happen on

type-unsafe pointers

[1] Ccured: George C. Necula, Jeremy Condit, Matthew Harren, Scott McPeak, and Westley Weimer. 2005. CCured: type-safe retrofitting of legacy software. ACM Trans. Program. Lang. Syst. 27, 3 (May 2005), 477-526.

119

Solution: Vital (vulnerability-oriented MCTS)

£ SMU

SINGAPORE MANAGEMENT
UNIVERSITY

School of
Computing and
Information Systems

9 How to select/expand tree nodes?

Use the number of unsafe pointers

Fact: vulnerabilities always happen on

type-unsafe pointers

» 45

g Positive correlation

§40- . . %
@ e
£ 35 . //

3 e .
9

o 301

©

5

@ 251

Qo

£

35

=2 *

201~
2000 4000 6000 8000 10000
Number of covered unsafe pointers

12000

[1] Ccured: George C. Necula, Jeremy Condit, Matthew Harren, Scott McPeak, and Westley Weimer. 2005. CCured: type-safe retrofitting of legacy software. ACM Trans. Program. Lang. Syst. 27, 3 (May 2005), 477-526.

120

Solution: Vital (vulnerability-oriented MCTS)

School of
Computing and
Information Systems

5 SMU

SINGAPO! RE MANAGEMENT
UNIVERSI

, How to select/expand tree nodes? .
— Use the number of unsafe pointers

— Fact: vulnerabilities always happen on

type-unsafe pointers

SN
(6]

Number of detected memory errors

H
o

w
w

w
o

N
w

Positive correlation

s

*

20+~ - - :
2000 4000 6000 8000

Number of covered unsafe pointers

10000

12000

How to evaluate rewards?
— Use state simulation (+backpropagation)

Reward: number of unsafe pointers

[1] Ccured: George C. Necula, Jeremy Condit, Matthew Harren, Scott McPeak, and Westley Weimer. 2005. CCured: type-safe retrofitting of legacy software. ACM Trans. Program. Lang. Syst. 27, 3 (May 2005), 477-526.
121

Solution: Vital (vulnerability-oriented MCTS) § SMU

ms

? How to select/expand tree nodes? *.
— Use the number of unsafe pointers

— Fact: vulnerabilities always happen on

type-unsafe pointers

«» 45
g Positive correlation
> 40 1

5

£

[J]

€ 354 *

-c -
(0] ,//
‘g ,’

o 301

©

5

@ 251

Qo

£

3

=2 *

201~ : . .
2000 4000 6000 8000
Number of covered unsafe pointers

How to evaluate rewards?

— Use state simulation (+backpropagation)

— Reward: number of unsafe pointers

True

l

False Normal execution

Slmulatlon execution

terminates

[1] Ccured: George C. Necula, Jeremy Condit, Matthew Harren, Scott McPeak, and Westley Weimer. 2005. CCured: type-safe retrofitting of legacy software. ACM Trans. Program. Lang. Syst. 27, 3 (May 2005), 477-526.

122

oooooooo
Computing and
" | Information Systems

|
LA

(TN 1“1 l'll\.

\ ." II!
l“l

I

36

oooooooo
Computing and
“| Information Systems

’.‘. 4 o \l | M

. ’!| ,l'l. .’\!\ ”’ !‘N

11— \i'
“ /| LA “ ' t m il H
AIJ L[A\ J”Hllh‘n “l i1
..l‘...‘l!ll i |
[LML IHH

(Uit BIALRILY

“\

i 'r il
;l.‘l ll 1‘1?‘ i l"l
| IJMII |

i

oooooooo
Computing and
Information Systems

Effective Path Exploration: outcome g oMU

* Type-unsafe pointer operations _—

_— —

\
,‘ "“ﬂ'?u Ml

— S

il Iij

i r!ﬁ,m"

|\ ” Jl’l I]
u\ H. |

l‘!u
NI

l“l‘!“il \l. g

I
Il ;mm i
/ .l

Vulnerable path

Evaluation Results & Takeaways

oooooooo

Computing and

"| Information Systems

37

Evaluation Results & Takeaways

—
C SM
N

SINGAPORE MANAGEMENT
UNIVERSITY

School of
Computing and
Information Systems

Results for Direction 1: Can we do the
path search faster?

— FastKLEE can reduce by up to 9.1% time
compared with the state-of-the-art

approach (i.e., KLEE)

10

< 8 ® o
e °
- ° °
g ® % °
- L]
°
g © (o= . ° ® o . .
& o o © ° ° e ©
- L o, []
° ° . 4 °
4 °
§ . i
% O .
S
e 2
0
0 5 10 15 20 25 30 35 40

Utilities in GNU Coreutils

37

Evaluation Results & Takeaways < oMU

Results for Direction 1: Can we do the Results for Direction 2: Can we search
path search faster? vulnerable paths first?
— FastKLEE can reduce by up to 9.1% time — Vital outperforms existing search strategies by
compared with the state-of-the-art covering up to 90.03% unsafe pointers and

approach (i.e., KLEE)

10

detecting up to 57.14% more unique memory errors.

. Vital outperforms existing solutions by achieving

@
[]
L]

o
[]
[
°
°

SO Ao o a speedup of up to 30x execution time and a

ntage of Speedups (%)
[]

. reduction of up to 20x memory consumption.

. — Detected an unknown vulnerability (a new CVE)

0 5 10 15 20 25 30 35 40
Utilities in GNU Coreutils

37

Evaluation Results & Takeaways ¢ oMU

Results for Direction 1: Can we do the Results for Direction 2: Can we search
path search faster? vulnerable paths first?
— FastKLEE can reduce by up to 9.1% time — Vital outperforms existing search strategies by
compared with the state-of-the-art covering up to 90.03% unsafe pointers and

approach (i.e., KLEE)

10

detecting up to 57.14% more unique memory errors.

. Vital outperforms existing solutions by achieving

@
[]
L]

o
[]
[
°
°

o Cep ot % 0 4 a speedup of up to 30x execution time and a

ntage of Speedups (%)

. reduction of up to 20x memory consumption.

. — Detected an unknown vulnerability (a new CVE)

0 5 10 15 20 25 30 35 40
Utilities in GNU Coreutils

« Takeaways

— Combing type inference with symbolic execution could help do a better path exploration

37

0 Methodology

> Cottontail: A new structured input generation for symbolic execution

& SMU

SINGAPORE MANAGEMENT
UNIVERSITY

38

School of
Computing and
Information Systems

Preliminary: online and offline &

a Online and offline symbolic execution

oooooooo
Computing and
Information Systems

Preliminary: online and offline Z oMU

a Online and offline symbolic execution
Online (without initial seeds)

oooooooo
Computing and
Information Systems

Preliminary: online and offline ¢ oMU

a Online and offline symbolic execution
Online (without initial seeds)

Fork at
branches

39

School of
Computing and
Information Systems

Preliminary: online and offline ¢ oMU

a Online and offline symbolic execution
Online (without initial seeds)

Fork at
branches

/

Example: KLEE

Cristian Cadar, Daniel Dunbar, and Dawson Engler. 2008.” KLEE: unassisted and
automatic generation of high-coverage tests for complex systems programs”. In OSDI.

39

School of
Computing and
Information Systems

Preliminary: online and offline ¢ oMU

a Online and offline symbolic execution
Online (without initial seeds) Offline (require initial seeds to setup)

Fork at
branches

/

Example: KLEE

Cristian Cadar, Daniel Dunbar, and Dawson Engler. 2008.” KLEE: unassisted and
automatic generation of high-coverage tests for complex systems programs”. In OSDI.

School of
Computing and
Information Systems

Preliminary: online and offline oMUy

a Online and offline symbolic execution
Online (without initial seeds) Offline (require initial seeds to setup)

Fork at
branches

One path
at a time

/

Example: KLEE

Cristian Cadar, Daniel Dunbar, and Dawson Engler. 2008.” KLEE: unassisted and
automatic generation of high-coverage tests for complex systems programs”. In OSDI.

School of
Computing and
Information Systems

Preliminary: online and offline Z oMU

a Online and offline symbolic execution
Online (without initial seeds) Offline (require initial seeds to setup)

Fork at
branches

One path Re-executed
at a time every time

/

Example: KLEE

Cristian Cadar, Daniel Dunbar, and Dawson Engler. 2008.” KLEE: unassisted and
automatic generation of high-coverage tests for complex systems programs”. In OSDI.

Preliminary: online and offline

School of
Computing and
Information Systems

e
=
X SMU
~
SINGAPORE MANAGEMENT
UNIVERSITY

a Online and offline symbolic execution
Online (without initial seeds)

Fork at
branches

/

Example: KLEE

Cristian Cadar, Daniel Dunbar, and Dawson Engler. 2008.” KLEE: unassisted and
automatic generation of high-coverage tests for complex systems programs”. In OSDI.

Offline (require initial seeds to setup)

One path
at a time

Re-executed
every time

Example: SAGE

Patrice Godefroid, Michael Y. Levin, and David Molnar. 2012. SAGE: whitebox fuzzing for
security testing. Commun. ACM.

39

Preliminary: online and offline

e
=
X SMU
~
SINGAPORE MANAGEMENT
UNIVERSITY

School of
Computing and
Information Systems

a Online and offline symbolic execution
Online (without initial seeds)

Fork at
branches

/

Example: KLEE

Cristian Cadar, Daniel Dunbar, and Dawson Engler. 2008.” KLEE: unassisted and
automatic generation of high-coverage tests for complex systems programs”. In OSDI.

Offline (require initial seeds to setup)

One path Re-executed
at a time every time

Example: SAGE

Patrice Godefroid, Michael Y. Levin, and David Molnar. 2012. SAGE: whitebox fuzzing for
security testing. Commun. ACM.

39

Preliminary: compilation-based

ooooo

40

Preliminary: compilation-based ¢ oMU

UNIVERSITY

0 Prevalent concolic execution style
» Compilation-based concolic/symbolic execution: SymCC (Usenix Sec’20)

> Potentially (ideally) can be used to test any scale software systems

40

Preliminary: compilation-based

0 Prevalent concolic exec

ution style

_
=
X SMU
~
SINGAPORE MANAGEMENT
UNIVERSITY

» Compilation-based concolic/symbolic execution: SymCC (Usenix Sec’20)

> Potentially (ideally) can be used to test any scale software systems

ﬂ_ W Compilation to IR

& ——— $new_re

store i

sult = add ns

32 %new_resul
32x %result_a

Bitcode k)

instrumentation
pass

=

Code
generation

/

/_) (1 1 01 [\ Z 5\

Binary execution

Test cases

40

s

>e SMU

~
SINGAPORE MANAGEMENT
UNIVERSITY

How can we perform concolic execution to generate
highly structured test inputs for systematically testing
parsing programs?

40

Challenges

< SMU

SINGAPORE MANAGEMENT
UNIVERSITY

School of
Computing and
Information Systems

41

0 #C1: what to solve?
> Not every path is worth solving (reduce resources/costs)

> EXxisting path constraint selection strategy is not structure-aware

SINGAPORE MANAGEMENT

41

SINGAPORE MANAGEMENT

0 #C1: what to solve?
> Not every path is worth solving (reduce resources/costs)

> EXxisting path constraint selection strategy is not structure-aware

Q #C2: how to solve?
> Need to make sure resulting test cases are both satisfactory to constraints and valid to syntax

> Existing constraint solving only solve for satisfactory, which yields a large number of invalid inputs

41

SINGAPORE MANAGEMENT

0 #C1: what to solve?
> Not every path is worth solving (reduce resources/costs)

> EXxisting path constraint selection strategy is not structure-aware

Q #C2: how to solve?
> Need to make sure resulting test cases are both satisfactory to constraints and valid to syntax

> Existing constraint solving only solve for satisfactory, which yields a large number of invalid inputs

0 #C3: How to acquire new seeds after saturation?
» For a better continuous testing

> Existing measurements (e.g., using gcov) could be time-consuming to get during runtime

41

Key insights

< SMU

SINGAPORE MANAGEMENT
UNIVERSITY

School of
Computing and
Information Systems

42

4 Insight 1: unique implementation characteristic

» Can help distinguish structural program paths

» Select only interesting path constraints

—
-
oS SMU
~
SINGAPORE MANAGEMENT
UNIVERSITY

42

Key insights

4 Insight 1: unique implementation characteristic

» Can help distinguish structural program paths

» Select only interesting path constraints

< SMU

SINGAPORE MANAGEMENT
UNIVERSITY

1 // seed input Seed

2 ¢ = 30000; a = [];
3 for (1 =0; 1 <2*c; i+=1) { a.push(i%c); }
4 a.sort(function (x, y) { return x - y; }); print(al2 * ¢ - 2]);

l Input string

1 // Parsing logic (/* adapted from jslex.c */)
2 static int jsY_isidentifierpart(int c) {

3 return isdigit(c) //"(bvsge #x00000039 (concat #x000000 k!95))"
4 || isalpha(c) || ¢ == "'$"' || ¢ == '_' || isalpharune(c);
5}
6 static int jsY_lexx(js_State *J){
while (1) {
8 [l s

9 switch (J->lexchar) {

10 case '(': jsY_next(J); return '(';
11 case ')': jsY_next(J); return ')';
12 case ',': jsY_next(J); return ',';
13 Yy (R

14 }

15 fless

A MuJS implementation

42

4 Insight 1: unique implementation characteristic

» Can help distinguish structural program paths

» Select only interesting path constraints

Q Insight 2: strong completion capabilities of LLMs

» Can help solve constraints smartly (more details later)

» Solve — Complete paradigm (our key contribution)

< SMU

SINGAPORE MANAGEMENT
UNIVERSITY

1 // seed input Seed

2 ¢ = 30000; a = [];
3 for (1 =0; i <2 *xc; i+=1) { a.push(i%c); }
t a.sort(function (x, y) { return x - y; }); print(al2 * c - 2]);

l Input string

1 // Parsing logic (/* adapted from jslex.c */)
2 static int jsY_isidentifierpart(int c) {

return isdigit(c) //"(bvsge #x00000039 (concat #x000000 k!95))"

1 || isalpha(c) || ¢ == '$"' || ¢ == '_' || isalpharune(c);
>}
6 static int jsY_lexx(js_State *J){
while (1) {
vy

switch (J->lexchar) {
case '(': jsY_next(J); return '(';
case ')': jsY_next(J); return ')';
case ',': jsY_next(J); return ',';
Y -
}
fless

) MuJS implementation

42

Key insights

4 Insight 1: unique implementation characteristic

» Can help distinguish structural program paths

» Select only interesting path constraints

Q Insight 2: strong completion capabilities of LLMs

» Can help solve constraints smartly (more details later)

» Solve — Complete paradigm (our key contribution)

< SMU

SINGAPORE MANAGEMENT
UNIVERSITY

1 // seed input Seed

2 ¢ = 30000; a = [];
3 for (1 =0; 1 <2*c; i+=1) { a.push(i%c); }
4 a.sort(function (x, y) { return x - y; }); print(al2 * ¢ - 2]);

l Input string

1 // Parsing logic (/* adapted from jslex.c */)
2 static int jsY_isidentifierpart(int c) {

3 return isdigit(c) //"(bvsge #x00000039 (concat #x000000 k!95))"
4 || isalpha(c) || ¢ == "'$"' || ¢ == '_' || isalpharune(c);
5}
6 static int jsY_lexx(js_State *J){
while (1) {
8 vy

9 switch (J->lexchar) {

10 case '(': jsY_next(J); return '(';
11 case ')': jsY_next(J); return ')';
12 case ',': jsY_next(J); return ',';
13 Y -

14 }

15 fless

e ? MuJS implementation

-

70
60 Z3

B LLM-driven solver
50 46.01% 43.78%
40
30

62.69%

22.74%

20 14.7%

10
04

Parser-checking Passing Rate (%)

2.1% 0.1%

LibxmI2 SQLite MuJS JSON-C

Figure 1: Parser checking passing rate comparison between
traditional constraint solver (i.e., Z3) and LLM-driven solver
(designed in COTTONTAIL).

42

Key insights

4 Insight 1: unique implementation characteristic

» Can help distinguish structural program paths

» Select only interesting path constraints

Q Insight 2: strong completion capabilities of LLMs

» Can help solve constraints smartly (more details later)

» Solve — Complete paradigm (our key contribution)

Q Insight 3: knowledgeable resources for seeds

» Can help generate fresh seeds when saturated

< SMU

SINGAPORE MANAGEMENT
UNIVERSITY

1 // seed input

2 ¢ = 30000; a =[]; Seed
3 for (1 =0; i <2x*xc; i+=1) { a.push(i%c); }

4 a.sort(function (x, y) { return x - y; }); print(al2 * ¢ - 2]);

l Input string

1 // Parsing logic (/* adapted from jslex.c */)
2 static int jsY_isidentifierpart(int c) {
3 return isdigit(c) //"(bvsge #x00000039 (concat #x000000 k!95))"
4 || isalpha(c) || ¢ == "'$"' || ¢ == '_' || isalpharune(c);
5}
6 static int jsY_lexx(js_State *J){

while (1) {
8 vy
9 switch (J->lexchar) {
10 case '(': jsY_next(J); return '(';
11 case ')': jsY_next(J); return ')';
12 case ',': jsY_next(J); return ',';
13 Yy (R
14 }
15 ? LS
L n " MudJS implementation
% 9 62.69%
360
250 46.01%
% a0
230 22.74%
g 20 14.7%
é 1 2% 0.1%
g° LibxmI2 sqLite Mujs JSON-C

Figure 1: Parser checking passing rate comparison between
traditional constraint solver (i.e., Z3) and LLM-driven solver
(designed in COTTONTAIL).

42

School of
Computing and
Information Systems

Our solution: Cottontail $ oMU

r T T ew T T T T w T Concolic Execution Engine
| 3 History Coverage - |
' (He C__ Validated Test Cases (TC’) + Updated Map (M?) + T
Test i History Coverage LLM-driven Seed % < e bed BiE)
Program || Recorder (§3.31) Generator (§3.3.2)
|
|

History-guided Seed Acquisition

R I —
N ' I~ " si+Ti(+m’) Binary execution| T Tmeees S TI+PCs+M |
|| structural Information | I I ' 82 I
I Collector (§3.1.1) ' | ' | Test Inpu? (T1) | : :
| i . :Structural Info (s1) ||Structural Coverage| \, | Coverage-guided || _Path Constraints (PCs) | LLM-driven Test Cases| TestCase ||
| Symbolic Capability - > | Maintainer —| Constraint Selector | | Coverage Map (M) || Constraint Solver | | ————| Validator T
: Reasoner | Binary | (§3.1.2) (§3.1.3) | : (§3.2.1) (TC) (§3.22) ||
|
| |
!_ I | o I

LLM-driven Constraint Solving

Structure-aware Constraint Selection

Our solution: Cottontail

Test
Program

IR

M’

Sy History Coverage - |

(HC

Recorder (§3.31)

LLM-driven Seed
Generator (§3.3.2)

|
|
i History Coverage
|
|
|

History-guided Seed Acquisition

Test Input (T1)

™

Structural Information
Collector (§3.1.1)

r—-——————

Symbolic Capability
Reasoner

Structural Instrumentation .

Structural Info (Slz
Binary i

Sl + TI (+M’)
e

Structural Coverage
Maintainer
(§3.1.2)

—

Coverage-guided
Constraint Selector
(§3.1.3)

Structure-aware Constraint Selection

Test Input (TI)
Path Constraints (PCs)

< SMU

SINGAPORE MANAGEMENT

UNIVERSITY

Concolic Execution Engine

Validated Test Cases (TC’) + Updated Map (M’) + TI

 Three new techniques

Coverage Map (M)

>
>

Tl + PCs

LLM-driven
Constraint Solver
(§3.2.1)

Test Cases
—_—
(TC)

TI+PCs+M
O

Test Case
Validator

(§3.2.2)

LLM-driven Constraint Solving

Structure-aware constraint selection: select only interesting path constraints (#C1)

43

Our solution: Cottontail

Test
Program

IR

< SMU

SINGAPORE MANAGEMENT
UNIVERSITY

Concolic Execution Engine

R
| Sy History Coverage - |

I (HC

i History Coverage LLM-driven Seed

|| Recorder (§3.31) Generator (§3.3.2)

|

|

History-guided Seed Acquisition

Test Input (T1)

Validated Test Cases (TC’) + Updated Map (M’) + TI

™

Structural Information
Collector (§3.1.1)

r—-——————

Symbolic Capability
Reasoner

Structural Info (SI)

Binary

Sl + TI (+M’)
e

Structural Coverage

(§3.1.2)

—

Coverage-guided
Constraint Selector
(§3.1.3)

|
|
|
|
| Maintainer
|
|
|

Structure-aware Constraint Selection

{____ﬁprs _________ TI+PCs+M |
: Test Input (TI) | 2% :
| | Path Constraints (PCs) »: LLM-driven Test Cases| Test Case ||
| Coverage Map (M) | Constraint Solver | |———| Validator T~
| | (§3.2.1) (TC) (§3.2.2) ||
| |
| |L LLM-driven Constraint Solving I

 Three new techniques

Structure-aware constraint selection: select only interesting path constraints (#C1)

LLM-driven constraint solving: smart LLM-solving + test case validator (#C2)

43

Our solution: Cottontail < oMU

UNIVERSITY

r T+ M M’ “||[New Test Inputs Concolic Execution Engine
I 3 History Coverage - |

| (He Validated Test Cases (TC’) + Updated Map (M’) + TI

Test || History Coverage LLM-driven Seed) (TC’) + Upd p (M’)
Program I| Recorder (§3.31) Generator (§3.3.2)

I

|

L

History-guided Seed Acquisition

IR Test Input (T1) v ——
I I | Sl + Tl (+M?) Binary execution| r Tl + PCs TI+PCs+M |
|| structural Information | I I I | Nyt |
I Collector (§3.1.1) : | - o, hes L © : i I
|) . { Structural Info (s1) ||Structural Coverage| \, | Coverage-guided | | | Path Constraints Cs) b LLM-driven Test Cases| 1est Case ||
| Symbolic Capability - > | Maintainer —| Constraint Selector | | Coverage Map (M) Constraint Solver | |———| Validator T~
: Reasoner : Binary : (§3.1.2) (§3.1.3) | : (§3.2.1) (1C) (§3.2.2) ||
I |
!_Structural Instrumentation _! | Structure-aware Constraint Selection | |L LLM-driven Constraint Solving I

 Three new techniques
« Structure-aware constraint selection: select only interesting path constraints (#C1)
« LLM-driven constraint solving: smart LLM-solving + test case validator (#C2)

« History-guided seed acquisition: capable seed generation (#C3)

43

Our solution: Cottontail < oMU

UNIVERSITY

r T+ M M’ “||[New Test Inputs Concolic Execution Engine
I 3 History Coverage - |

| (He Validated Test Cases (TC’) + Updated Map (M’) + TI

Test || History Coverage LLM-driven Seed) (TC’) + Upd p (M’)
Program I| Recorder (§3.31) Generator (§3.3.2)

I

|

L

History-guided Seed Acquisition
R E————————

Test Input (T1) v ——
[| | Sl + Tl (+M?) Binary execution| r Tl + PCs
I'l" Structural Information | I I |
I Collector (§3.1.1) l | I fissslopoE) l
| i . :Structurcnl Info (s1) ||Structural Coverage| \, | Coverage-guided | | | Path Constraints (PCs) »: LLM-driven Test Cases| Jest Case
| Symbolic Capability - > | Maintainer —| Constraint Selector | | Coverage Map (M) Constraint Solver | |———| Validator A
: Reasoner : Binary : (§3.1.2) (§3.1.3) I : (§3.2.1) (TC) (§3.2.2) =
| S
!_Structural Instrumentation _! | Structure-aware Constraint Selection | | LLM-driven Constraint Solving

 Three new techniques

« Structure-aware constraint selection: select only interesting path constraints (#C1)
« LLM-driven constraint solving: smart LLM-solving + test case validator (#C2)

« History-guided seed acquisition: capable seed generation (#C3)

43

School of
Computing and
Information Systems

Novelty: Solve-Complete paradigm $ oMU

</> System Prompt (Solve-Complete Paradigm with Chain of Thought)
You are a smart Constraint Solver.
Given a constraint and a marked test input string, please generate new test case step by step:

1. Identify the location of Constraint Mask ("[k!n]") and solve it with the solution of the constraint
- The solution is not arbitrarily chosen; instead, make the combined string align with input syntax,
such as keywords, defined functions, or variable names to ensure the resulting string remains valid.
2. Identify the location of Flexible Mask (*[xxx]") and complete it with a flexible size string:
- The replacement is not randomly selected: instead, follow the syntax of JavaScript and make the
whole string remaining a valid JavaScript code.
3. Ensure final output is enclosed with **".

</> User Prompt

Given the path constraint **‘bvsge #x00000039 (concat #x000000 k!95))"** and the marked seed input
you need to change: **'c =30000; a=[]; for 1=0;1<2 * c; i += 1) {a.push(i%c);} a.sort(function (x, y)
{ r[k!95][xxx]"*", what is the new test input?

</> Response

Let’s solve the constraint step by step:
1. The constraint mask is [k!95] and we now solve it based on the given constraint.
- The constraint suggests the value should be large or equal to ASCII 0x39. Considering the previous
string 'r’, the solution ‘e’ should satisfy the requirements, as ‘return’ is a keyword in JavaScript.
2. The flexible mask is [xxx] and we now complete it with other flexible size strings:
- Since previous string starting with ‘re" after solving, complete ‘[xxx]* with ‘turn y;} print(a[100]);",
as ‘return’ is a keyword, and 'y and ‘a’ are defined variables.
3. Final output:

"¢ =30000; a=[]; for 1=0;i<2 *c;i+=1) {a.push(i%c);} a.sort(function (X, y) {return y;}
print(a[100]);™

Novelty: Solve-Complete paradigm ¢ oMU

School of
Computing and
Information Systems

.

</> System Prompt (Solve-Complete Paradigm with Chain of Thought)
You are a smart Constraint Solver.
Given a constraint and a marked test input string, please generate new test case step by step:

1. Identify the location of Constraint Mask ("[k!n]") and solve it with the solution of the constraint
- The solution is not arbitrarily chosen; instead, make the combined string align with input syntax,
such as keywords, defined functions, or variable names to ensure the resulting string remains valid.
2. Identify the location of Flexible Mask (*[xxx]") and complete it with a flexible size string:
- The replacement is not randomly selected: instead, follow the syntax of JavaScript and make the
whole string remaining a valid JavaScript code.
3. Ensure final output is enclosed with **".

</> User Prompt

Given the path constraint **‘bvsge #x00000039 (concat #x000000 k!95))"** and the marked seed input
you need to change: **'c =30000; a=[]; for 1=0;1<2 * c; i += 1) {a.push(i%c);} a.sort(function (x, y)
{ r[k!95][xxx]"*", what is the new test input?

</> Response

Let’s solve the constraint step by step:
1. The constraint mask is [k!95] and we now solve it based on the given constraint.
- The constraint suggests the value should be large or equal to ASCII 0x39. Considering the previous
string 'r’, the solution ‘e’ should satisfy the requirements, as ‘return’ is a keyword in JavaScript.
2. The flexible mask is [xxx] and we now complete it with other flexible size strings:
- Since previous string starting with ‘re" after solving, complete "[xxx]" with ‘turn y;} print(a[100]);",
as ‘return’ is a keyword, and 'y and ‘a’ are defined variables.
3. Final output:

"¢ =30000; a=[]; for 1=0;i<2 *c;i+=1) {a.push(i%c);} a.sort(function (X, y) {return y;}
print(a[100]);™

c=30000;a=[];for(1=0;1i<2*c;i+=1)
{a.push(i%c);} a.sort(function (x, y) { r?

44

Novelty: Solve-Complete paradigm oMUy

School of
Computing and
Information Systems

UNIVERSITY

X

</> System Prompt (Solve-Complete Paradigm with Chain of Thought)
You are a smart Constraint Solver.

Given a constraint and a marked test input string, please generate new test case step by step:

1. Identify the location of Constraint Mask ("[k!n]") and solve it with the solution of the constraint
- The solution is not arbitrarily chosen; instead, make the combined string align with input syntax,
such as keywords, defined functions, or variable names to ensure the resulting string remains valid.
2. Identify the location of Flexible Mask (*[xxx]") and complete it with a flexible size string:
- The replacement is not randomly selected: instead, follow the syntax of JavaScript and make the

whole string remaining a valid JavaScript code.
3. Ensure final output is enclosed with **".

</> User Prompt

Given the path constraint | “bvsge #x00000039 (concat #x000000 k!95))""*

Jand the marked seed input

you need to change: **'¢ =30000; a=[]; for 1=0;i<2 * ¢;i+=1) {a.pus
{ r[k!95][xxx]"*", what is the new test input?

h(i%c);} a.sort(function (x, y)

</> Response
Let’s solve the constraint step by step:

1. The constraint mask is [k!95] and we now solve it based on the given constraint.
- The constraint suggests the value should be large or equal to ASCII 0x39. Considering the previous

string 'r’, the solution ‘e’ should satisfy the requirements, as ‘return’ is

a keyword in JavaScript.

2. The flexible mask is [xxx] and we now complete it with other flexible size strings:
- Since previous string starting with ‘re after solving, complete ‘[xxx]" with ‘turn y;} print(a[100]);",

as ‘return’ is a keyword, and 'y and ‘a’ are defined variables.
3. Final output:

print(a[100]);""

"¢ =30000; a=[]; for 1=0;i<2 *c;i+=1) {a.push(i%c);} a.sort(function (X, y) {return y;}

c=30000;a=[];for(1=0;1i<2*c;i+=1)
{a.push(i%c);} a.sort(function (x, y) { r?

Step 1: syntax-aware solve process

c=30000;a=[];for(1i=0;1<2*c;i+=1
{a.push(i%oc);} a.sort(function (x, y) {re

44

Novelty: Solve-Complete paradigm oMUy

School of
Computing and
Information Systems

UNIVERSITY

X

</> System Prompt (Solve-Complete Paradigm with Chain of Thought)
You are a smart Constraint Solver.

Given a constraint and a marked test input string, please generate new test case step by step:

1. Identify the location of Constraint Mask ("[k!n]") and solve it with the solution of the constraint
- The solution is not arbitrarily chosen; instead, make the combined string align with input syntax,
such as keywords, defined functions, or variable names to ensure the resulting string remains valid.
2. Identify the location of Flexible Mask (*[xxx]") and complete it with a flexible size string:
- The replacement is not randomly selected: instead, follow the syntax of JavaScript and make the

whole string remaining a valid JavaScript code.
3. Ensure final output is enclosed with **".

</> User Prompt

Tradition solver (Z3): r9

Given the path constraint | “bvsge #x00000039 (concat #x000000 k!95))""*

Jand the marked seed input

you need to change: **'¢ =30000; a=[]; for 1=0;i<2 * ¢;i+=1) {a.pus
{ r[k!95][xxx]"*", what is the new test input?

h(i%c);} a.sort(function (x, y)

</> Response
Let’s solve the constraint step by step:

1. The constraint mask is [k!95] and we now solve it based on the given constraint.
- The constraint suggests the value should be large or equal to ASCII 0x39. Considering the previous

string 'r’, the solution ‘e’ should satisfy the requirements, as ‘return’ is

a keyword in JavaScript.

2. The flexible mask is [xxx] and we now complete it with other flexible size strings:
- Since previous string starting with ‘re after solving, complete ‘[xxx]" with ‘turn y;} print(a[100]);",

as ‘return’ is a keyword, and 'y and ‘a’ are defined variables.
3. Final output:

print(a[100]);""

"¢ =30000; a=[]; for 1=0;i<2 *c;i+=1) {a.push(i%c);} a.sort(function (X, y) {return y;}

c=30000;a=[];for(1=0;1i<2*c;i+=1)
{a.push(i%c);} a.sort(function (x, y) { r?

Step 1: syntax-aware solve process

c=30000;a=[];for(1i=0;1<2*c;i+=1
{a.push(i%oc);} a.sort(function (x, y) {re

44

Novelty: Solve-Complete paradigm

School of
Computing and
Information Systems

£ SMU

SINGAPORE MANAGEMENT
UNIVERSITY

X

</> System Prompt (Solve-Complete Paradigm with Chain of Thought)
You are a smart Constraint Solver.

Given a constraint and a marked test input string, please generate new test case step by step:

1. Identify the location of Constraint Mask ("[k!n]") and solve it with the solution of the constraint
- The solution is not arbitrarily chosen; instead, make the combined string align with input syntax,
such as keywords, defined functions, or variable names to ensure the resulting string remains valid.
2. Identify the location of Flexible Mask (*[xxx]") and complete it with a flexible size string:
- The replacement is not randomly selected: instead, follow the syntax of JavaScript and make the

whole string remaining a valid JavaScript code.
3. Ensure final output is enclosed with **".

</> User Prompt

Tradition solver (Z3): r9

Given the path constraint | “bvsge #x00000039 (concat #x000000 k!95))""*

you need to change: **'¢ =30000; a=[]; for 1=0;i<2 * ¢;i+=1) {a.pus
{ r[k!95][xxx]"*", what is the new test input?

Jand the marked seed input
h(i%c);} a.sort(function (x, y)

</> Response
Let’s solve the constraint step by step:

1. The constraint mask is [k!95] and we now solve it based on the given constraint.
- The constraint suggests the value should be large or equal to ASCII 0x39. Considering the previous

string ‘1", the solution ‘e’ should satisfy the requirements, as ‘return’ is

a keyword in JavaScript.

2. The flexible mask is [xxx] and we now complete it with other flexible size strings:
- Since previous string starting with ‘re after solving, complete ‘[xxx]" with ‘turn y;} print(a[100]);",

as ‘return’ is a keyword, and 'y and ‘a’ are defined variables.
3. Final output:

print(a[100]);""

"¢ =30000; a=[]; for 1=0;i<2 *c;i+=1) {a.push(i%c);} a.sort(function (X, y) {return y;}

c=30000;a=[];for(1=0;1i<2*c;i+=1)
{a.push(i%c);} a.sort(function (x, y) { r?

Step 1: syntax-aware solve process

c=30000;a=[];for(1i=0;1<2*c;i+=1
{a.push(i%oc);} a.sort(function (x, y) {re

Step 2: syntax-aware complete process

c=30000;a=[];for(1=0;1i<2*c;i+=1)
{a.push(i%oc);} a.sort(function (x, y) {returny;}
print(a[100]);" ™"

44

Novelty: Solve-Complete paradigm

School of
Computing and
Information Systems

£ SMU

SINGAPORE MANAGEMENT
UNIVERSITY

X

</> System Prompt (Solve-Complete Paradigm with Chain of Thought)
You are a smart Constraint Solver.

Given a constraint and a marked test input string, please generate new test case step by step:

1. Identify the location of Constraint Mask ("[k!n]") and solve it with the solution of the constraint
- The solution is not arbitrarily chosen; instead, make the combined string align with input syntax,
such as keywords, defined functions, or variable names to ensure the resulting string remains valid.
2. Identify the location of Flexible Mask (*[xxx]") and complete it with a flexible size string:
- The replacement is not randomly selected: instead, follow the syntax of JavaScript and make the

whole string remaining a valid JavaScript code.
3. Ensure final output is enclosed with **".

</> User Prompt

Tradition solver (Z3): r9

Given the path constraint | “bvsge #x00000039 (concat #x000000 k!95))""*

you need to change: **'¢ =30000; a=[]; for 1=0;i<2 * ¢;i+=1) {a.pus
{ r[k!95][xxx]"*", what is the new test input?

Jand the marked seed input
h(i%c);} a.sort(function (x, y)

</> Response
Let’s solve the constraint step by step:

1. The constraint mask is [k!95] and we now solve it based on the given constraint.
- The constraint suggests the value should be large or equal to ASCII 0x39. Considering the previous

string 'r’, the solution ‘e’ should satisfy the requirements, as ‘return’ is

a keyword in JavaScript.

2. The flexible mask is [xxx] and we now complete it with other flexible size strings:
- Since previous string starting with ‘re after solving, complete ‘[xxx]" with ‘turn y;} print(a[100]);",

as ‘return’ is a keyword, and 'y and ‘a’ are defined variables.
3. Final output:

print(a[100]);""

"¢ =30000; a=[]; for 1=0;i<2 *c;i+=1) {a.push(i%c);} a.sort(function (X, y) {return y;}

c=30000;a=[];for(1=0;1i<2*c;i+=1)
{a.push(i%c);} a.sort(function (x, y) { r?

Step 1: syntax-aware solve process

c=30000;a=[];for(1i=0;1<2*c;i+=1
{a.push(i%oc);} a.sort(function (x, y) {re

Step 2: syntax-aware complete process

c=30000;a=[];for(1=0;1i<2*c;i+=1)
{a.push(i%oc);} a.sort(function (x, y) {returny;}
print(a[100]);" ™"

Solve and Complete for not only constraint satisfiability but also syntax validity

44

Evaluation Results & Takeaways

oooooooo

Computing and

"| Information Systems

45

Evaluation Results & Takeaways

< SMU

SINGAPORE MANAGEMENT
UNIVERSITY

School of
Computing and
Information Systems

RQI: How does Cottontail perform
compared with baseline approaches?

— Cottontail outperforms state-of-the-art
approaches (SymCC and Marco) by 14.15%

and 14.31% in terms of line coverage

4.74% BN COTTONTAIL
SymCC
MARCO

61.54%

70

45

Evaluation Resulls & Takeaways

£ SMU

SINGAPORE MANAGEMENT

UNIVERSITY

School of

EOﬂJLJtiung and

Information Systems

RQ1: How does Cottontail perform
compared with baseline approaches?

RQ2: Can Cottontail find new
vulnerabilities in practice?

— Cottontail outperforms state-of-the-art
approaches (SymCC and Marco) by 14.15%

and 14.31% in terms of line coverage

Libxml2 — 13.90% B COTTONTAIL
SymCC

Libexpat MARCO
SQLite
UnQLite oLS4%
MulS
QuickJS
JSON-C

Jansson

70

— Cottontail detected 6 new vulnerabilities, showing

practical vulnerability detection capability

— Marco can only detect one and SymCC can detect four

ID Subject Description Status CVE-Assigned

#1 MulJS Memory leak Fixed CVE-2024-55061
#2 MuJS Heap overflow Fixed CVE-2025-26082
#3 Quick]S Stack overflow Fixed CVE-2024-13903
#4 Quick]JS Stack overflow Fixed CVE-2025-26081
#5 UnQLite Global overflow Reported CVE-2025-26083
#6 UnQLite Heap overflow Reported = CVE-2025-3791

45

Evaluation Results & Takeaways < OMU | Computing ane

UNIVERSITY Information Systems

RQ1: How does Cottontail perform RQ2: Can Cottontail find new
compared with baseline approaches? vulnerabilities in practice?
— Cottontail outperforms state-of-the-art — Cottontail detected 6 new vulnerabilities, showing

approaches (SymCC and Marco) by 14.15% practical vulnerability detection capability

and 14.31% in terms of line coverage — Marco can only detect one and SymCC can detect four
Libemi2 et 30 oot - — -
Lberpat Marco ID Subject Description Status CVE-Assigned
SQLite #1 MuJS Memory leak Fixed CVE-2024-55061
UnQite | 0615 s #2 MuJS Heap overflow Fixed CVE-2025-26082

MulS

#3 QuickJS Stack overflow Fixed CVE-2024-13903
#4 Quick]JS Stack overflow Fixed CVE-2025-26081
#5 UnQLite Global overflow Reported CVE-2025-26083
#6 UnQLite Heap overflow Reported = CVE-2025-3791

QuickJS
JSON-C

Jansson

70

Takeaways

— Smart LLM-driven constraint solving could help generate more complex test cases

School of
Computing and
Information Systems

UNIVERSITY

Retrospection of Motivation Example oMU

void buggy () {

// Vulnl: require complete memory modeling
void * from = malloc (100);
void * to = malloc (100);
if (tfo > from){..}
if (from > to) {
vulnerable_funci();

}

// Vuln2: require handling path explosion
... // deeply nested
vulnerable_func2();

// Vuln3: require structured test inputs
if (input = “{....}"){
// application logic
vulnerable_func3();
}else {
earlier_termination();
}

Retrospection of Motivation Example < oMU

UNIVERSITY

School of
Computing and
Information Systems

void buggy () {

// Vulnl: require complete memory modeling
void * from = malloc (100);
void * to = malloc (100);
if (tfo > from){..}
if (from > to) {
vulnerable_funci();

}

O SymLoc: new memory modeling

// Vuln2: require handling path explosion

... // deeply nested
vulnerable_func2();

// Vuln3: require structured test inputs
if (input = “{....}") {
// application logic
vulnerable_func3();
}else {
earlier_termination();
}

46

Retrospection of Motivation Example oMy

UNIVERSITY

void buggy () {

// Vulnl: require complete memory modeling
void * from = malloc (100);
void * to = malloc (100);

if (to > from) { ... } , O SymLoc: new memory modeling

if (from > to) {
vulnerable_funcl();

}

// Vuln2: require handling path explosion
... // deeply nested
vulnerable_func2();

// Vuln3: require structured test inputs
if (input = “{....}") {
// application logic
vulnerable_func3();
} else {
earlier_termination();
}

O FastKLEE: efficient path exploration

O Vital: effective path exploration

46

Retrospection of Motivation Example ¢ oMU

void buggy () {

// Vulnl: require complete memory modeling
void * from = malloc (100);
void * to = malloc (100);

if (to > from) { ... } , O SymLoc: new memory modeling

if (from > to) {
vulnerable_funcl();

}

// Vuln2: require handling path explosion
... // deeply nested
vulnerable_func2();

// Vuln3: require structured test inputs
if (input = “{....}") {
// application logic

| ble f 3(); = = .
Velso e / O Cottontail: smart test input generation

earlier_termination();
}

O FastKLEE: efficient path exploration

O Vital: effective path exploration

46

Retrospection of Motivation Example < oMU .

void buggy () {

// Vulnl: require complete memory modeling
void * from = malloc (100);
void * to = malloc (100);

if (to > from) { ... } , O SymLoc: new memory modeling

if (from > to) {
vulnerable_funcl();

}

// Vuln2: require handling path explosion
... // deeply nested
vulnerable_func2();

// Vuln3: require structured test inputs
if (input = “{....}") {
// application logic

| ble f 3(); = = .
Velso e / O Cottontail: smart test input generation

earlier_termination();
}

O FastKLEE: efficient path exploration

O Vital: effective path exploration

But not all vulnerabilities can be caught

46

—~
° <~ -
I K
~
U I n e SINGAPORE MANAGEMENT
UNIVERSITY

o Future work
> Extension of current solutions
» Combine program analysis with GenAl

Future work

< SMU

SINGAPORE MANAGEMENT
UNIVERSITY

School of
Computing and
Information Systems

48

School of
Computing and
Information Systems

Future work < oMU

0 Extension of Current Solutions

> Extend SymLoc with more realistic memory modeling

> Extend Vital into greybox/hybrid as targets to guide directed fuzzing

> Extend Cottontail to support complex input formats (e.g., binaries)

48

FUII.U re work }X\ éM&A{M;MM (Vj’{;"“'ﬂ:r[JLJTITH;i and

UNIVERSITY Information Systems

O Extension of Current Solutions

> Extend SymLoc with more realistic memory modeling

> Extend Vital into greybox/hybrid as targets to guide directed fuzzing

> Extend Cottontail to support complex input formats (e.g., binaries)

O Program analysis + GenAl

48

Future work < oMU

UNIVERSITY

0 Extension of Current Solutions

> Extend Cottontail to support complex input formats (e.g., binaries)

O Program analysis + GenAl

— New testing engine that can be more general (e.g., across different langauges)

48

Future work Z oMU
0 Extension of Current Solutions

o

o > Extend SymLoc with more realistic memory modeling

. > Extend Vital into greybox/hybrid as targets to guide directed fuzzing

. > Extend Cottontail to support complex input formats (e.g., binaries)

O Program analysis + GenAl

— New testing engine that can be more general (e.g., across different langauges)

— Combine LLM with formal verification techniques to guarantee the robustness

48

Future work < oMU
0 Extension of Current Solutions

| » Extend SymLoc with more realistic memory modeling

| > Extend Vital into greybox/hybrid as targets to guide directed fuzzing

| » Extend Cottontail to support complex input formats (e.g., binaries)

O Program analysis + GenAl

— New testing engine that can be more general (e.g., across different langauges)
— Combine LLM with formal verification techniques to guarantee the robustness

— Practical hybrid selective symbolic execution for mixed programs

* New software ecosystem (human written code + Al generated code)

48

Ouvutline

o Conclusion and Acknowledgment

_
=
X SMU
~
SINGAPORE MANAGEMENT
UNIVERSITY

49

-~
-
e SMU
~
SINGAPORE MANAGEMENT

UNIVERSITY

SymLoc [1] Objective 1: complete and
(TSE'24) precise memory model
Son FastKLEE [2]
oftware ' | (FSE'22 Demonstration) Objective 2: efficient and o
Vital [3] effective path exploration “:> Vulnerabilities
(under review)
Output
Cottontail [4] Objective 3: effective
(under review) structured input generation

50

—
-
e SMU
~
SINGAPORE MANAGEMENT

UNIVERSITY

SymLoc [1] Objective 1: complete and
(TSE"24) precise memory model
Soft FastKLEE [2]
oftware ' | (FSE'22 Demonstration) Objective 2: efficient and o
Vital [3] effective path exploration ":> Vulnerabilities
(under review)
Output
Cottontail [4] Objective 3: effective
(under review) structured input generation

Research impact

— Four open-sourced tools to foster further symbolic execution research

— 10+ new memory related vulnerabilities are detected (with 7 new CVE assigned)

« All of them have been fixed by developers so far

[1] Haoxin Tu, Lingxiao Jiang, and et.al, “Concretely Mapped Symbolic Memory Locations for Memory Error Detection” (IEEE TSE).

[2] Haoxin Tu, Lingxiao Jiang, and et.al,, “FastKLEE: Faster Symbolic Execution via Reducing Redundant Bound Checking of Type-Safe Pointers”, in Tool Demonstrations Track of FSE 2022.
[3] Haoxin Tu, Lingxiao Jiang and et.al,. "Vital: Vulnerability-Oriented Symbolic Execution via Type-Unsafe Pointer-Guided Monte Carlo Tree Search." arXiv:2408.08772 (2024).

[4] Haoxin Tu, Seongmin Lee, and et.al. "Large Language Model-Driven Concolic Execution for Highly Structured Test Input Generation." arXiv:2504.17542 (2025).

50

-

oS SMU

~
SINGAPORE MANAGEMENT
UNIVERSITY

Acknowledgement

Thank you & Questions? ¢ SMU

lelelelelelele

Boosting Symbolic Execution for Vulnerability Detection

SymLoc [1] Obijective 1: complete and
(TSE'24) precise memory model
Sor | FEastKLEE [2]
ortware “:D (FSE’'22 Demonstration) Objective 2: efficient and "
Under Test Vital [3 effective path exploration ":> Vulnerabilities
(under review)
Input Output
g Cottontail [4] Objective 3: effective 5
(under review) structured input generation

Dissertation Defense by Haoxin Tu (May 9th, 2024)

52

& SMU

SINGAPORE MANAGEMENT
UNIVERSITY

[1] Automated Test Generation: “A Journey from Symbolic Execution to Smart Fuzzing and Beyond” (Keynote by Koushik Sen)
[2] Zhide Zhou, Zhilei Ren, Guojun Gao, He Jiang. “An empirical study of optimization bugs in GCC and LLVM”. JSS, 2021.
[3] James C. King. 1976. Symbolic execution and program testing. Commun. ACM 19, 7 (July 1976), 385-394.

[4] Roberto Baldoni, Emilio Coppa, Daniele Cono D’elia, Camil Demetrescu, and Irene Finocchi. 2018. “A Survey of Symbolic Execution
Techniques”. ACM Computer Survey. 51, 3, Article 50 (July 2018), 39 pages.

[5] Seo, Hyunmin, and Sunghun Kim. "How we get there: a context-guided search strategy in concolic testing." Proceedings of the 22nd
ACM SIGSOFT International Symposium on Foundations of Software Engineering. ACM, 2014.
[6] Cristian Cadar, Daniel Dunbar, and Dawson Engler. 2008.” KLEE: unassisted and automatic generation of high-coverage tests for

complex systems programs”. In Proceedings of the 8th USENIX conference on Operating systems design and implementation (OSDI'08).
USENIX Association, USA, 209-224.

[7] C. Cadar and K. Sen, “Symbolic execution for software testing: three decades later,” Commun. ACM, vol. 56, no. 2, pp. 82-90, 2013.
[8] V. Chipounov, V. Kuznetsov, and G. Candea, “S2E: a platform for in-vivo multi-path analysis of software systems,” in Proceedings of
the sixteenth international conference on Architectural support for programming languages and operating systems, New York, NY, USA, Mar.
2011, pp. 265-278.

[9] S. Poeplau and A. Francillon, “SymQEMU: Compilation-based symbolic execution for binaries,” presented at the in Proceedings of the
2021 Network and Distributed System Security Symposium, 2021.

[10] Y. Shoshitaishvili et al., “SOK: (State of) The Art of War: Offensive Techniques in Binary Analysis,” in 2016 IEEE Symposium on
Security and Privacy (SP), May 2016, pp. 138-157.

[11] S. Poeplau and A. Francillon, “Symbolic execution with SymCC: Don’t interpret, compile!,” in 29th USENIX Security Symposium, 2020,
pp. 181-198.

[12] David Trabish, Timotej Kapus, Noam Rinetzky, and Cristian Cadar. 2020. “Past-sensitive pointer analysis for symbolic execution”. In
Proceedings of the 28th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE 2020). New York, NY, USA, 197-208.

