
Boosting Symbolic Execution for

Vulnerability Detection
Dissertation Defense

1

Prof. Lingxiao Jiang, Prof. Xuhua Ding, Prof. David Lo, Prof. Marcel BöhmeCommittee Members:

May 9th, 2025

Haoxin Tu

Outline

2

Outline

2

p Background
Ø Software vulnerabilities
Ø Symbolic execution

Outline

2

p Background
Ø Software vulnerabilities
Ø Symbolic execution

p Motivation
Ø What limitations prevent current symbolic execution for vulnerability detection?
Ø Thesis statement and research objectives

Outline

2

p Background
Ø Software vulnerabilities
Ø Symbolic execution

p Motivation
Ø What limitations prevent current symbolic execution for vulnerability detection?
Ø Thesis statement and research objectives

p Methodology
Ø SymLoc: A new memory model for symbolic execution
Ø FastKLEE and Vital: Two new path exploration for symbolic execution
Ø Cottontail: A new structured input generation for symbolic execution

Outline

2

p Background
Ø Software vulnerabilities
Ø Symbolic execution

p Motivation
Ø What limitations prevent current symbolic execution for vulnerability detection?
Ø Thesis statement and research objectives

p Methodology
Ø SymLoc: A new memory model for symbolic execution
Ø FastKLEE and Vital: Two new path exploration for symbolic execution
Ø Cottontail: A new structured input generation for symbolic execution

p Future work
Ø Extension of current solutions
Ø Combine program analysis with GenAI

Outline

2

p Background
Ø Software vulnerabilities
Ø Symbolic execution

p Motivation
Ø What limitations prevent current symbolic execution for vulnerability detection?
Ø Thesis statement and research objectives

p Methodology
Ø SymLoc: A new memory model for symbolic execution
Ø FastKLEE and Vital: Two new path exploration for symbolic execution
Ø Cottontail: A new structured input generation for symbolic execution

p Future work
Ø Extension of current solutions
Ø Combine program analysis with GenAI

p Conclusion and Acknowledgment

Background: software are everywhere

3https://www.coderus.com/software-101-a-complete-guide-to-the-different-types-of-software/

https://www.coderus.com/software-101-a-complete-guide-to-the-different-types-of-software/

Background: inevitable software defects

4

Vulnerability By Type (2015-2024)
(https://www.cvedetails.com/vulnerabilities-by-types.php)

Vulnerability By Yeas (2015-2024)
(https://www.cvedetails.com/vulnerabilities-by-years.php)

https://www.cvedetails.com/vulnerabilities-by-types.php
https://www.cvedetails.com/vulnerabilities-by-years.php

Background: inevitable software defects

4

Vulnerability By Type (2015-2024)
(https://www.cvedetails.com/vulnerabilities-by-types.php)

Vulnerability By Yeas (2015-2024)
(https://www.cvedetails.com/vulnerabilities-by-years.php)

Bug trends on two mainstream compilers (GCC and LLVM)

https://www.cvedetails.com/vulnerabilities-by-types.php
https://www.cvedetails.com/vulnerabilities-by-years.php

Background: inevitable software defects

4

Vulnerability By Type (2015-2024)
(https://www.cvedetails.com/vulnerabilities-by-types.php)

Vulnerability By Yeas (2015-2024)
(https://www.cvedetails.com/vulnerabilities-by-years.php)

Bug trends on two mainstream compilers (GCC and LLVM)

https://www.cvedetails.com/vulnerabilities-by-types.php
https://www.cvedetails.com/vulnerabilities-by-years.php

Background: symbolic execution (1/3)

5

Ø Proposed in 1976 [1], one of the most popular program analysis techniques, which scales

for many software testing and computer security applications

[1] James C. King. 1976. Symbolic execution and program testing. Commun. ACM 19, 7 (July 1976), 385–394.

q What is symbolic execution?

Background: symbolic execution (1/3)

5

Ø Proposed in 1976 [1], one of the most popular program analysis techniques, which scales

for many software testing and computer security applications

[1] James C. King. 1976. Symbolic execution and program testing. Commun. ACM 19, 7 (July 1976), 385–394.

Symbolic
Execution

Engine

SMT solver

Path
constraints

Satisfying
Assignments

Test cases
Test

program Symbolic
values

Key idea

q What is symbolic execution?

Background: symbolic execution (2/3)

6

q A toy example

int bad_abs(int x)
{

if (x < 0)
return –x;

if (x == 1234)
return –x;

return x;
}

Background: symbolic execution (2/3)

6

q A toy example

int bad_abs(int x)
{

if (x < 0)
return –x;

if (x == 1234)
return –x;

return x;
}

x < 0

x < 0 x >= 0

TRUE FALSE

x = *

Background: symbolic execution (2/3)

6

q A toy example

int bad_abs(int x)
{

if (x < 0)
return –x;

if (x == 1234)
return –x;

return x;
}

x < 0

x < 0 x >= 0

return -x

TRUE FALSE

x = *

Background: symbolic execution (2/3)

6

q A toy example

int bad_abs(int x)
{

if (x < 0)
return –x;

if (x == 1234)
return –x;

return x;
}

x = 1234

x < 0

x < 0 x >= 0

return x

x != 1234

return -x

return -x

x = 1234

TRUE

TRUE FALSE

FALSE

x = *

Background: symbolic execution (2/3)

6

q A toy example

int bad_abs(int x)
{

if (x < 0)
return –x;

if (x == 1234)
return –x;

return x;
}

x = 1234

x < 0

x < 0 x >= 0

return x

x != 1234

return -x

return -x

x = 1234
x = -2

x = 3x = 1234

test1.out

TRUE

TRUE FALSE

FALSE

x = *

test2.out test3.out

Background: symbolic execution (2/3)

6

q A toy example

int bad_abs(int x)
{

if (x < 0)
return –x;

if (x == 1234)
return –x;

return x;
}

x = 1234

x < 0

x < 0 x >= 0

return x

x != 1234

return -x

return -x

x = 1234
x = -2

x = 3x = 1234

test1.out

TRUE

TRUE FALSE

FALSE

x = *

test2.out test3.out

x < 0;
x >= 0 && x = 1234;
x >= 0 && x != 1234;
(path constraints)

test1.out
test2.out
test3.out
(test cases)

Background: symbolic execution (3/3)

7

Background: symbolic execution (3/3)

7

q Why symbolic execution could work?
Ø Execute the program with symbolic inputs

Ø Represent equivalent execution paths with path constraints

Ø Solve path constraints to obtain one representative input that exercises the program to go

down that specific path

Background: symbolic execution (3/3)

7

q Why symbolic execution could work?
Ø Execute the program with symbolic inputs

Ø Represent equivalent execution paths with path constraints

Ø Solve path constraints to obtain one representative input that exercises the program to go

down that specific path

Path constraints Constraint Solver

Worked!

Background: symbolic execution (3/3)

7

q Why symbolic execution could work?
Ø Execute the program with symbolic inputs

Ø Represent equivalent execution paths with path constraints

Ø Solve path constraints to obtain one representative input that exercises the program to go

down that specific path

Path constraints Constraint Solver

Worked!

Ø Many applications

– high-coverage test generation, automated debugging, automated program repair, exploit generation,

wireless sensor networks, online gaming, …

Background: symbolic execution (3/3)

7

q Why symbolic execution could work?
Ø Execute the program with symbolic inputs

Ø Represent equivalent execution paths with path constraints

Ø Solve path constraints to obtain one representative input that exercises the program to go

down that specific path

Path constraints Constraint Solver

Worked!

Ø Many applications

– high-coverage test generation, automated debugging, automated program repair, exploit generation,

wireless sensor networks, online gaming, …

Is current symbolic execution effective enough
to detect vulnerabilities in practice?

Background: symbolic execution (3/3)

7

q Why symbolic execution could work?
Ø Execute the program with symbolic inputs

Ø Represent equivalent execution paths with path constraints

Ø Solve path constraints to obtain one representative input that exercises the program to go

down that specific path

Path constraints Constraint Solver

Worked!

Ø Many applications

– high-coverage test generation, automated debugging, automated program repair, exploit generation,

wireless sensor networks, online gaming, …

Is current symbolic execution effective enough
to detect vulnerabilities in practice?

NO, and why?

Outline

8

p Background
Ø Software vulnerabilities
Ø Symbolic execution

p Motivation
Ø What limitations prevent current symbolic execution for vulnerability detection?
Ø Thesis statement and research objectives

p Methodology
Ø SymLoc: A new memory model for symbolic execution
Ø FastKLEE and Vital: Two new path exploration for symbolic execution
Ø Cottontail: A new structured input generation for symbolic execution

p Future work
Ø Extension of current solutions
Ø Combine program analysis with GenAI

p Conclusion and Acknowledgment

void buggy () {

// Vuln1: require complete memory modeling
void * from = malloc (100);
void * to = malloc (100);
if (to > from) { … }
if (from > to) {

vulnerable_func1();
}

// Vuln2: require handling path explosion
… // deeply nested

vulnerable_func2();
…

// Vuln3: require structured test inputs
if (input = “{….}”) {

// application logic
vulnerable_func3();

} else {
earlier_termination();

}
}

Motivation Example

9

void buggy () {

// Vuln1: require complete memory modeling
void * from = malloc (100);
void * to = malloc (100);
if (to > from) { … }
if (from > to) {

vulnerable_func1();
}

// Vuln2: require handling path explosion
… // deeply nested

vulnerable_func2();
…

// Vuln3: require structured test inputs
if (input = “{….}”) {

// application logic
vulnerable_func3();

} else {
earlier_termination();

}
}

Motivation Example

9

void buggy () {

// Vuln1: require complete memory modeling
void * from = malloc (100);
void * to = malloc (100);
if (to > from) { … }
if (from > to) {

vulnerable_func1();
}

// Vuln2: require handling path explosion
… // deeply nested

vulnerable_func2();
…

// Vuln3: require structured test inputs
if (input = “{….}”) {

// application logic
vulnerable_func3();

} else {
earlier_termination();

}
}

Motivation Example

9

void buggy () {

// Vuln1: require complete memory modeling
void * from = malloc (100);
void * to = malloc (100);
if (to > from) { … }
if (from > to) {

vulnerable_func1();
}

// Vuln2: require handling path explosion
… // deeply nested

vulnerable_func2();
…

// Vuln3: require structured test inputs
if (input = “{….}”) {

// application logic
vulnerable_func3();

} else {
earlier_termination();

}
}

Motivation Example

9

void buggy () {

// Vuln1: require complete memory modeling
void * from = malloc (100);
void * to = malloc (100);
if (to > from) { … }
if (from > to) {

vulnerable_func1();
}

// Vuln2: require handling path explosion
… // deeply nested

vulnerable_func2();
…

// Vuln3: require structured test inputs
if (input = “{….}”) {

// application logic
vulnerable_func3();

} else {
earlier_termination();

}
}

Motivation Example

9

Can existing symbolic execution effectively
detect the three vulnerabilities?

void buggy () {

// Vuln1: require complete memory modeling
void * from = malloc (100);
void * to = malloc (100);
if (to > from) { … }
if (from > to) {

vulnerable_func1();
}

// Vuln2: require handling path explosion
… // deeply nested

vulnerable_func2();
…

// Vuln3: require structured test inputs
if (input = “{….}”) {

// application logic
vulnerable_func3();

} else {
earlier_termination();

}
}

Motivation Example

9

Can existing symbolic execution effectively
detect the three vulnerabilities?

NO

Limitation 1: Limited memory modeling

10

q How does the engine handle dynamic memory allocations?

Limitation 1: Limited memory modeling

10

q How does the engine handle dynamic memory allocations?
1. int* array = malloc (100 * sizeof (int));
2. array [i] = 10; // i is symbolic
3. assert(array[j] != 0); // j is symbolic

Limitation 1: Limited memory modeling

10

q How does the engine handle dynamic memory allocations?
1. int* array = malloc (100 * sizeof (int));
2. array [i] = 10; // i is symbolic
3. assert(array[j] != 0); // j is symbolic

Ø Possible solutions
1. Fully symbolic (ASE’17)

• consider any possible outcome
2. Fully concrete (OSDI’08)

• consider one possible outcome
3. Partial symbolic and concrete (S&P’12)

• concretize writes,
• Possible ranges to read

N states
accurate but not scale

1 state
scale but not accurate

K states
scale but (in) accurate

Limitation 1: Limited memory modeling

10

q How does the engine handle dynamic memory allocations?
1. int* array = malloc (100 * sizeof (int));
2. array [i] = 10; // i is symbolic
3. assert(array[j] != 0); // j is symbolic

Ø Possible solutions
1. Fully symbolic (ASE’17)

• consider any possible outcome
2. Fully concrete (OSDI’08)

• consider one possible outcome
3. Partial symbolic and concrete (S&P’12)

• concretize writes,
• Possible ranges to read

N states
accurate but not scale

1 state
scale but not accurate

K states
scale but (in) accurate

Fixed addresses

Problematic read/write

Limitation 1: Limited memory modeling

10

q How does the engine handle dynamic memory allocations?
1. int* array = malloc (100 * sizeof (int));
2. array [i] = 10; // i is symbolic
3. assert(array[j] != 0); // j is symbolic

Ø Possible solutions
1. Fully symbolic (ASE’17)

• consider any possible outcome
2. Fully concrete (OSDI’08)

• consider one possible outcome
3. Partial symbolic and concrete (S&P’12)

• concretize writes,
• Possible ranges to read

N states
accurate but not scale

1 state
scale but not accurate

K states
scale but (in) accurate

We need a more complete and precise memory modeling !

Fixed addresses

Problematic read/write

void buggy () {

// Vuln1: require complete memory modeling
void * from = malloc (100);
void * to = malloc (100);
if (to > from) { … }
if (from > to) {

vulnerable_func1();
}

// Vuln2: require handling path explosion
… // deeply nested

vulnerable_func2();
…

// Vuln3: require structured test inputs
if (input = “{….}”) {

// application logic
vulnerable_func3();

} else {
earlier_termination();

}
}

Motivation Example

12

void buggy () {

// Vuln1: require complete memory modeling
void * from = malloc (100);
void * to = malloc (100);
if (to > from) { … }
if (from > to) {

vulnerable_func1();
}

// Vuln2: require handling path explosion
… // deeply nested

vulnerable_func2();
…

// Vuln3: require structured test inputs
if (input = “{….}”) {

// application logic
vulnerable_func3();

} else {
earlier_termination();

}
}

Motivation Example

12

Can existing symbolic execution effectively
detect the three vulnerabilities?

void buggy () {

// Vuln1: require complete memory modeling
void * from = malloc (100);
void * to = malloc (100);
if (to > from) { … }
if (from > to) {

vulnerable_func1();
}

// Vuln2: require handling path explosion
… // deeply nested

vulnerable_func2();
…

// Vuln3: require structured test inputs
if (input = “{….}”) {

// application logic
vulnerable_func3();

} else {
earlier_termination();

}
}

Motivation Example

12

Can existing symbolic execution effectively
detect the three vulnerabilities?

NO, two remaining

Limitation 2: path explosion

13

q How does symbolic execution deal with path explosion?

Limitation 2: path explosion

13

q How does symbolic execution deal with path explosion?

Limitation 2: path explosion

13

q How does symbolic execution deal with path explosion?

Ø Efficient solutions
Ø With specialized optimizations (HotOS’13)

Ø With code transformation (ECOOP’18)

Limitation 2: path explosion

13

Ø Effective solutions
Ø Random search (DFS and BFS)
Ø Heuristic guided search (OSDI’08)

Ø coverage, instruction, etc.

q How does symbolic execution deal with path explosion?

Ø Efficient solutions
Ø With specialized optimizations (HotOS’13)

Ø With code transformation (ECOOP’18)

Limitation 2: path explosion

13

Ø Effective solutions
Ø Random search (DFS and BFS)
Ø Heuristic guided search (OSDI’08)

Ø coverage, instruction, etc.

q How does symbolic execution deal with path explosion?

Ø Efficient solutions
Ø With specialized optimizations (HotOS’13)

Ø With code transformation (ECOOP’18)

Inefficient path
search

No unified
targets

Ineffective path
search

Path explosion visualization

14

Vulnerable path

How to search vulnerable paths in rather complex software systems?

Path explosion visualization

14

Vulnerable path

How to search vulnerable paths in rather complex software systems?

We need a more efficient and effective path
exploration !

void buggy () {

// Vuln1: require complete memory modeling
void * from = malloc (100);
void * to = malloc (100);
if (to > from) { … }
if (from > to) {

vulnerable_func1();
}

// Vuln2: require handling path explosion
… // deeply nested

vulnerable_func2();
…

// Vuln3: require structured test inputs
if (input = “{….}”) {

// application logic
vulnerable_func3();

} else {
earlier_termination();

}
}

Motivation Example

16

void buggy () {

// Vuln1: require complete memory modeling
void * from = malloc (100);
void * to = malloc (100);
if (to > from) { … }
if (from > to) {

vulnerable_func1();
}

// Vuln2: require handling path explosion
… // deeply nested

vulnerable_func2();
…

// Vuln3: require structured test inputs
if (input = “{….}”) {

// application logic
vulnerable_func3();

} else {
earlier_termination();

}
}

Motivation Example

16

Can existing symbolic execution effectively
detect the three vulnerabilities?

void buggy () {

// Vuln1: require complete memory modeling
void * from = malloc (100);
void * to = malloc (100);
if (to > from) { … }
if (from > to) {

vulnerable_func1();
}

// Vuln2: require handling path explosion
… // deeply nested

vulnerable_func2();
…

// Vuln3: require structured test inputs
if (input = “{….}”) {

// application logic
vulnerable_func3();

} else {
earlier_termination();

}
}

Motivation Example

16

Can existing symbolic execution effectively
detect the three vulnerabilities?

NO, one remaining still

Limitation 3: structured input generation

17

q How does symbolic execution generate structured test cases?

(Byte-level)

Test cases

(From SE)

Limitation 3: structured input generation

17

q How does symbolic execution generate structured test cases?

Ø Possible solutions
Ø Grammar-based generation (PLDI’08)

• Use grammar specifications to guide generation

Ø Token-level symbolization (ISSTA’21)

• Treating tokens rather than bytes as symbolic data

(Byte-level)

Test cases

(From SE)

Limitation 3: structured input generation

17

q How does symbolic execution generate structured test cases?

Ø Possible solutions
Ø Grammar-based generation (PLDI’08)

• Use grammar specifications to guide generation

Ø Token-level symbolization (ISSTA’21)

• Treating tokens rather than bytes as symbolic data

(Byte-level)

Test cases

(From SE)

Structure-agnostic
path selection

Ineffective
constraint solving

Limitation 3: structured input generation

17

q How does symbolic execution generate structured test cases?

Ø Possible solutions
Ø Grammar-based generation (PLDI’08)

• Use grammar specifications to guide generation

Ø Token-level symbolization (ISSTA’21)

• Treating tokens rather than bytes as symbolic data

(Byte-level)

Test cases

(From SE)

We need a new structured test case generation strategy !

Structure-agnostic
path selection

Ineffective
constraint solving

Thesis statement and research objectives

19

q Statement: This thesis aims to boost symbolic execution by designing new solutions to

alleviate three key limitations in memory modeling/path exploration/test input generation,

for efficient and effective automatic vulnerability detection.

Summary of Key Research Problems

56

How can we efficiently and effectively search vulnerable paths in
rather complex software systems?

Fixed addresses Problematic W/R
Lim

ite
d

m
em

or
y

m
od

eli
ng

Restricted
input

generation

Path
explosion
challenge

Inefficient
path search

Structure-agnostic
path selection

How can we perform concolic execution to generate
highly structured test inputs for systematically

testing parsing programs?

Ineffective
constraint solving

How can we support a more complete memory model
for dynamic memory allocations？

Ineffective path
search

No unified
targets

Thesis statement and research objectives

19

q Statement: This thesis aims to boost symbolic execution by designing new solutions to

alleviate three key limitations in memory modeling/path exploration/test input generation,

for efficient and effective automatic vulnerability detection.

[1] Haoxin Tu, Lingxiao Jiang, and et.al, “Concretely Mapped Symbolic Memory Locations for Memory Error Detection” (IEEE TSE).
[2] Haoxin Tu, Lingxiao Jiang, and et.al,, “FastKLEE: Faster Symbolic Execution via Reducing Redundant Bound Checking of Type-Safe Pointers”, in Tool Demonstrations Track of FSE 2022.
[3] Haoxin Tu, Lingxiao Jiang and et.al,. "Vital: Vulnerability-Oriented Symbolic Execution via Type-Unsafe Pointer-Guided Monte Carlo Tree Search." arXiv:2408.08772 (2024).
[4] Haoxin Tu, Seongmin Lee, and et.al. "Large Language Model-Driven Concolic Execution for Highly Structured Test Input Generation." arXiv:2504.17542 (2025).

Software
Under Test Vulnerabilities

Input Output

Thesis statement and research objectives

19

q Statement: This thesis aims to boost symbolic execution by designing new solutions to

alleviate three key limitations in memory modeling/path exploration/test input generation,

for efficient and effective automatic vulnerability detection.

SymLoc [1]
(TSE’24)

[1] Haoxin Tu, Lingxiao Jiang, and et.al, “Concretely Mapped Symbolic Memory Locations for Memory Error Detection” (IEEE TSE).
[2] Haoxin Tu, Lingxiao Jiang, and et.al,, “FastKLEE: Faster Symbolic Execution via Reducing Redundant Bound Checking of Type-Safe Pointers”, in Tool Demonstrations Track of FSE 2022.
[3] Haoxin Tu, Lingxiao Jiang and et.al,. "Vital: Vulnerability-Oriented Symbolic Execution via Type-Unsafe Pointer-Guided Monte Carlo Tree Search." arXiv:2408.08772 (2024).
[4] Haoxin Tu, Seongmin Lee, and et.al. "Large Language Model-Driven Concolic Execution for Highly Structured Test Input Generation." arXiv:2504.17542 (2025).

Software
Under Test Vulnerabilities

Objective 1: complete and
precise memory model

Input Output

Thesis statement and research objectives

19

q Statement: This thesis aims to boost symbolic execution by designing new solutions to

alleviate three key limitations in memory modeling/path exploration/test input generation,

for efficient and effective automatic vulnerability detection.

SymLoc [1]
(TSE’24)

FastKLEE [2]
(FSE’22 Demonstration)

Vital [3]
(under review)

[1] Haoxin Tu, Lingxiao Jiang, and et.al, “Concretely Mapped Symbolic Memory Locations for Memory Error Detection” (IEEE TSE).
[2] Haoxin Tu, Lingxiao Jiang, and et.al,, “FastKLEE: Faster Symbolic Execution via Reducing Redundant Bound Checking of Type-Safe Pointers”, in Tool Demonstrations Track of FSE 2022.
[3] Haoxin Tu, Lingxiao Jiang and et.al,. "Vital: Vulnerability-Oriented Symbolic Execution via Type-Unsafe Pointer-Guided Monte Carlo Tree Search." arXiv:2408.08772 (2024).
[4] Haoxin Tu, Seongmin Lee, and et.al. "Large Language Model-Driven Concolic Execution for Highly Structured Test Input Generation." arXiv:2504.17542 (2025).

Software
Under Test Vulnerabilities

Objective 1: complete and
precise memory model

Objective 2: efficient and
effective path exploration

Input Output

Thesis statement and research objectives

19

q Statement: This thesis aims to boost symbolic execution by designing new solutions to

alleviate three key limitations in memory modeling/path exploration/test input generation,

for efficient and effective automatic vulnerability detection.

SymLoc [1]
(TSE’24)

FastKLEE [2]
(FSE’22 Demonstration)

Vital [3]
(under review)

Cottontail [4]
(under review)

[1] Haoxin Tu, Lingxiao Jiang, and et.al, “Concretely Mapped Symbolic Memory Locations for Memory Error Detection” (IEEE TSE).
[2] Haoxin Tu, Lingxiao Jiang, and et.al,, “FastKLEE: Faster Symbolic Execution via Reducing Redundant Bound Checking of Type-Safe Pointers”, in Tool Demonstrations Track of FSE 2022.
[3] Haoxin Tu, Lingxiao Jiang and et.al,. "Vital: Vulnerability-Oriented Symbolic Execution via Type-Unsafe Pointer-Guided Monte Carlo Tree Search." arXiv:2408.08772 (2024).
[4] Haoxin Tu, Seongmin Lee, and et.al. "Large Language Model-Driven Concolic Execution for Highly Structured Test Input Generation." arXiv:2504.17542 (2025).

Software
Under Test Vulnerabilities

Objective 1: complete and
precise memory model

Objective 2: efficient and
effective path exploration

Objective 3: effective
structured input generation

Input Output

void buggy () {

// Vuln1: require complete memory modeling
void * from = malloc (100);
void * to = malloc (100);
if (to > from) { … }
if (from > to) {

vulnerable_func1();
}

// Vuln2: require handling path explosion
… // deeply nested

vulnerable_func2();
…

// Vuln3: require structured test inputs
if (input = “{….}”) {

// application logic
vulnerable_func3();

} else {
earlier_termination();

}
}

Motivation Example (with our solutions)

20

void buggy () {

// Vuln1: require complete memory modeling
void * from = malloc (100);
void * to = malloc (100);
if (to > from) { … }
if (from > to) {

vulnerable_func1();
}

// Vuln2: require handling path explosion
… // deeply nested

vulnerable_func2();
…

// Vuln3: require structured test inputs
if (input = “{….}”) {

// application logic
vulnerable_func3();

} else {
earlier_termination();

}
}

Motivation Example (with our solutions)

20

Can our boosted symbolic execution
effectively detect the three vulnerabilities?

YES

Outline

21

p Background
Ø Software vulnerabilities
Ø Symbolic execution

p Motivation
Ø What limitations prevent current symbolic execution for vulnerability detection?
Ø Thesis statement and research objects

p Methodology
Ø SymLoc: A new memory model for symbolic execution
Ø FastKLEE and Vital: Two new path exploration for symbolic execution
Ø Cottontail: A new structured input generation for symbolic execution

p Future work
Ø Extension of current solutions
Ø Combine Program Analysis with GenAI

p Conclusion and Acknowledgment

A New Memory Model: insights

22

Ø Three fundamental designs are required

A New Memory Model: insights

22

Ø Three fundamental designs are required
A. Symbolization of addresses and modeling them into path constraints

A New Memory Model: insights

22

Ø Three fundamental designs are required
A. Symbolization of addresses and modeling them into path constraints

B. Practical read/write operation from/to symbolic addresses

A New Memory Model: insights

22

Ø Three fundamental designs are required
A. Symbolization of addresses and modeling them into path constraints

B. Practical read/write operation from/to symbolic addresses

C. Effectively tracking the uses of symbolic addresses

A New Memory Model: insights

22

Ø Three fundamental designs are required
A. Symbolization of addresses and modeling them into path constraints

B. Practical read/write operation from/to symbolic addresses

C. Effectively tracking the uses of symbolic addresses

A New Memory Model: insights

22

Ø Existing approaches are difficult to satisfy all above requirements
– KLEE and Symsize (FSE’21): none of the requirements can be satisfied

– RAM (ICSE’18): satisfies requirements #B and partially #A but not #C

– Memsight (ASE’17): satisfies requirements #A and #B but not #C

Solution: SymLoc (1/3)

23

70

Solution: SymLoc (1/3)

23

71

High-level Idea

Solution: SymLoc (1/3)

23

Two new techniques
ØTechnique 1: new address

symbolization

72

High-level Idea

Solution: SymLoc (1/3)

23

Two new techniques
ØTechnique 1: new address

symbolization

ØTechnique 2: symbolic

memory operation/tracking

73

High-level Idea

Solution: SymLoc (2/3)

24

Solution: SymLoc (2/3)

24

Solution: SymLoc (2/3)

24

p New address symbolization

n Symbolic addressing model

Ø Encoding the symbolic address into path

constraints

Existing:

Ours:

Solution: SymLoc (2/3)

24

p New address symbolization

n Input
Ø A set of variables to return from malloc function

n Output
Ø A symbolic-concrete memory map (symLocMap)
Ø Will be used in the latter phase

n Symbolic addressing model

Ø Encoding the symbolic address into path

constraints

Existing:

Ours:

Solution: SymLoc (3/3)

25

Solution: SymLoc (3/3)

25

Solution: SymLoc (3/3)

25

p Symbolic memory operation and tracking

n Input
Ø symLocMap, a symbolic expression, and a function

n Output
Ø A concrete address or normal symbolic variable or a bug

…

Solution: SymLoc (3/3)

25

p Symbolic memory operation and tracking

n Input
Ø symLocMap, a symbolic expression, and a function

n Output
Ø A concrete address or normal symbolic variable or a bug

…

n Tracking example
Ø A memory address is symbolized as “sym_a”

Ø If the freed object is “sym_a” or “sym_a + 100”

• Indicating UAF bugs

SymLoc: Evaluation Results & Takeaways

26

SymLoc: Evaluation Results & Takeaways

26

– SymLoc could cover 15% and 48% more

unique lines of code on average than the two

baseline approaches.

– SymLoc could detect 169% and 218% more

spatial memory errors than the two baseline

approaches.

– Two new vulnerabilities have been detected

RQ1: How does SymLoc perform in
detecting spatial memory errors?

SymLoc: Evaluation Results & Takeaways

26

– SymLoc could cover 15% and 48% more

unique lines of code on average than the two

baseline approaches.

– SymLoc could detect 169% and 218% more

spatial memory errors than the two baseline

approaches.

– Two new vulnerabilities have been detected

RQ1: How does SymLoc perform in
detecting spatial memory errors?

RQ2: How does SymLoc perform in
detecting temporal memory errors?

– SymLoc has an overall better temporal memory

error detection capability for detecting UAF and

DoF errors than static, dynamic, and symbolic

execution-based approaches.

SymLoc: Evaluation Results & Takeaways

26

– SymLoc could cover 15% and 48% more

unique lines of code on average than the two

baseline approaches.

– SymLoc could detect 169% and 218% more

spatial memory errors than the two baseline

approaches.

– Two new vulnerabilities have been detected

• Takeaways
– A more complete memory model could help detect tricky vulnerabilities

RQ1: How does SymLoc perform in
detecting spatial memory errors?

RQ2: How does SymLoc perform in
detecting temporal memory errors?

– SymLoc has an overall better temporal memory

error detection capability for detecting UAF and

DoF errors than static, dynamic, and symbolic

execution-based approaches.

Outline

27

p Background
Ø Software vulnerabilities
Ø Symbolic execution

p Motivation
Ø What limitations prevent current symbolic execution for vulnerability detection?
Ø Thesis statement and research objects

p Methodology
Ø SymLoc: A new memory model for symbolic execution
Ø FastKLEE and Vital: Two new path exploration for symbolic execution
Ø Cottontail: A new structured input generation for symbolic execution

p Future work
Ø Extension of current solutions
Ø Combine Program Analysis with GenAI

p Conclusion and Acknowledgment

Two New Path Explorations (1/2)

28

Vulnerable path

Two New Path Explorations (1/2)

28

Vulnerable path

How to search vulnerable paths in
rather complex software systems?

Two New Path Explorations (1/2)

28

Vulnerable path

How to search vulnerable paths in
rather complex software systems?

Direction 1: Can
we do the path
search faster?
(FastKLEE)

Direction 2: Can
we search vuln-

erable paths first?
(Vital)

Two New Path Explorations (1/2)

28

Vulnerable path

How to search vulnerable paths in
rather complex software systems?

Direction 1: Can
we do the path
search faster?
(FastKLEE)

Direction 2: Can
we search vuln-

erable paths first?
(Vital)

Efficient Path Exploration: Rethinking

29

Traditional
Symbolic Execution

Source code Intermediate
Representation(IR)

1 2
3

Efficient Path Exploration: Rethinking

29

Traditional
Symbolic Execution

Source code Intermediate
Representation(IR)

1 2
3

Interpretation

Efficient Path Exploration: Rethinking

29

Traditional
Symbolic Execution

Source code Intermediate
Representation(IR)

1 2
3

(1) Observation
– The number of interpreted instructions tends to

be huge (several billion only in one hour run)

Interpretation

Efficient Path Exploration: Rethinking

29

Traditional
Symbolic Execution

Source code Intermediate
Representation(IR)

1 2
3

(1) Observation
– The number of interpreted instructions tends to

be huge (several billion only in one hour run)

(2) Overheads in current symbolic execution
– The color depth represents the overheads of

an interpreted instruction
– All instructions are equal

Interpretation
...…

Efficient Path Exploration: Rethinking

29

Traditional
Symbolic Execution

Source code Intermediate
Representation(IR)

1 2
3

(1) Observation
– The number of interpreted instructions tends to

be huge (several billion only in one hour run)

(2) Overheads in current symbolic execution
– The color depth represents the overheads of

an interpreted instruction
– All instructions are equal

Interpretation
...…

Can we reduce the overhead of interpreted instructions
for faster symbolic execution?

Solution: FastKLEE (1/2)

30

• Key insights

[1] Ccured: George C. Necula, Jeremy Condit, Matthew Harren, Scott McPeak, and Westley Weimer. 2005. CCured: type-safe retrofitting of legacy software. ACM Trans. Program. Lang. Syst. 27, 3 (May 2005), 477–526.

Solution: FastKLEE (1/2)

30

• Key insights
– Only a small portion of memory-related

instructions need bound checking

[1] Ccured: George C. Necula, Jeremy Condit, Matthew Harren, Scott McPeak, and Westley Weimer. 2005. CCured: type-safe retrofitting of legacy software. ACM Trans. Program. Lang. Syst. 27, 3 (May 2005), 477–526.

Solution: FastKLEE (1/2)

30

• Key insights
– Only a small portion of memory-related

instructions need bound checking
– Reduce the interpreting overhead of the

most frequently interpreted ones (i.e.,
load/store instructions)

[1] Ccured: George C. Necula, Jeremy Condit, Matthew Harren, Scott McPeak, and Westley Weimer. 2005. CCured: type-safe retrofitting of legacy software. ACM Trans. Program. Lang. Syst. 27, 3 (May 2005), 477–526.

Solution: FastKLEE (1/2)

30

• Key insights
– Only a small portion of memory-related

instructions need bound checking
– Reduce the interpreting overhead of the

most frequently interpreted ones (i.e.,
load/store instructions)

– Inspired by Type Inference system [1]

SAFE/SEQ

WILD

[1] Ccured: George C. Necula, Jeremy Condit, Matthew Harren, Scott McPeak, and Westley Weimer. 2005. CCured: type-safe retrofitting of legacy software. ACM Trans. Program. Lang. Syst. 27, 3 (May 2005), 477–526.

Solution: FastKLEE (1/2)

30

• Key insights
– Only a small portion of memory-related

instructions need bound checking
– Reduce the interpreting overhead of the

most frequently interpreted ones (i.e.,
load/store instructions)

– Inspired by Type Inference system [1]

SAFE/SEQ

WILD

• Advantage: overheads in FastKLEE
– Interpretation overheads for some instructions

are reduced

Reduced overheads

[1] Ccured: George C. Necula, Jeremy Condit, Matthew Harren, Scott McPeak, and Westley Weimer. 2005. CCured: type-safe retrofitting of legacy software. ACM Trans. Program. Lang. Syst. 27, 3 (May 2005), 477–526.

31

Solution: FastKLEE (2/2)

31

Traditional
Symbolic Execution

Source code Intermediate
Representation(IR)

1 2
3

Solution: FastKLEE (2/2)

31

Traditional
Symbolic Execution

Source code Intermediate
Representation(IR)

1 2
3

Phase I Phase II

Solution: FastKLEE (2/2)

31

• Phase I: Introduce a Type Inference System to classify memory-related instruction types
– Unsafe memory instructions will be stored in CheckList

4

Type Inference
System

Traditional
Symbolic Execution

Source code Intermediate
Representation(IR)

1 2
3

4
Phase I Phase II

A CheckList

Solution: FastKLEE (2/2)

• Phase II: Conduct Customized Memory Operation in Fast symbolic execution
– Only perform checking for Unsafe memory instructions during interpretation

31

• Phase I: Introduce a Type Inference System to classify memory-related instruction types
– Unsafe memory instructions will be stored in CheckList

4

5

Type Inference
System

Traditional
Symbolic Execution

Source code Intermediate
Representation(IR)

1 2
3

Fast
Symbolic Execution

54
Phase I Phase II

A CheckList

Solution: FastKLEE (2/2)

Two New Path Explorations (2/2)

32

Vulnerable path

How to search vulnerable paths in
rather complex software systems?

Direction 1: Can
we do the path
search faster?
(FastKLEE)

Direction 2: Can
we search vuln-

erable paths first?
(Vital)

Insight 1: approximate a vulnerable path

33

[1] Ccured: George C. Necula, Jeremy Condit, Matthew Harren, Scott McPeak, and Westley Weimer. 2005. CCured: type-safe retrofitting of legacy software. ACM Trans. Program. Lang. Syst. 27, 3 (May 2005), 477–526.

Insight 1: approximate a vulnerable path

33

• Revisit type inference (Ccurd [1])

[1] Ccured: George C. Necula, Jeremy Condit, Matthew Harren, Scott McPeak, and Westley Weimer. 2005. CCured: type-safe retrofitting of legacy software. ACM Trans. Program. Lang. Syst. 27, 3 (May 2005), 477–526.

Insight 1: approximate a vulnerable path

33

SAFE/SEQ

WILD

Test program

• Revisit type inference (Ccurd [1])

[1] Ccured: George C. Necula, Jeremy Condit, Matthew Harren, Scott McPeak, and Westley Weimer. 2005. CCured: type-safe retrofitting of legacy software. ACM Trans. Program. Lang. Syst. 27, 3 (May 2005), 477–526.

Insight 1: approximate a vulnerable path

33

SAFE/SEQ

WILD

Test program

Observation: Memory errors can

only happen in unsafe pointer

operations (SEQ/WILD)!

• Revisit type inference (Ccurd [1])

[1] Ccured: George C. Necula, Jeremy Condit, Matthew Harren, Scott McPeak, and Westley Weimer. 2005. CCured: type-safe retrofitting of legacy software. ACM Trans. Program. Lang. Syst. 27, 3 (May 2005), 477–526.

Insight 1: approximate a vulnerable path

33

SAFE/SEQ

WILD

Test program

Observation: Memory errors can

only happen in unsafe pointer

operations (SEQ/WILD)!

• Revisit type inference (Ccurd [1]) int * p = malloc (100);

*(p + “input”) = 1; // unsafe pointer operation

[1] Ccured: George C. Necula, Jeremy Condit, Matthew Harren, Scott McPeak, and Westley Weimer. 2005. CCured: type-safe retrofitting of legacy software. ACM Trans. Program. Lang. Syst. 27, 3 (May 2005), 477–526.

Insight 1: approximate a vulnerable path

33

SAFE/SEQ

WILD

Test program

Observation: Memory errors can

only happen in unsafe pointer

operations (SEQ/WILD)!

• Revisit type inference (Ccurd [1]) int * p = malloc (100);

*(p + “input”) = 1; // unsafe pointer operation

We can exploit such information from type inference to guide the path search!

[1] Ccured: George C. Necula, Jeremy Condit, Matthew Harren, Scott McPeak, and Westley Weimer. 2005. CCured: type-safe retrofitting of legacy software. ACM Trans. Program. Lang. Syst. 27, 3 (May 2005), 477–526.

Insight 2: search the path smartly

34

Insight 2: search the path smartly

34

Insight 2: search the path smartly

34

Monte Carlo Tree Search (MCTS) in AlphaGo

Insight 2: search the path smartly

34

Monte Carlo Tree Search (MCTS) in AlphaGo

• Analogy: Game tree (win) VS Execution tree (a vulnerable path)

We can use MCTS to guide the path search towards the vulnerable paths!

Insight 2: search the path smartly

34

Monte Carlo Tree Search (MCTS) in AlphaGo

• Analogy: Game tree (win) VS Execution tree (a vulnerable path)

Key question 1: How to select/expand tree nodes?

Key question 2: How to evaluate rewards?

We can use MCTS to guide the path search towards the vulnerable paths!

Solution: Vital (vulnerability-oriented MCTS)

[1] Ccured: George C. Necula, Jeremy Condit, Matthew Harren, Scott McPeak, and Westley Weimer. 2005. CCured: type-safe retrofitting of legacy software. ACM Trans. Program. Lang. Syst. 27, 3 (May 2005), 477–526.
118

Solution: Vital (vulnerability-oriented MCTS)

• How to select/expand tree nodes?
– Use the number of unsafe pointers

– Fact: vulnerabilities always happen on

type-unsafe pointers

[1] Ccured: George C. Necula, Jeremy Condit, Matthew Harren, Scott McPeak, and Westley Weimer. 2005. CCured: type-safe retrofitting of legacy software. ACM Trans. Program. Lang. Syst. 27, 3 (May 2005), 477–526.
119

Solution: Vital (vulnerability-oriented MCTS)

• How to select/expand tree nodes?
– Use the number of unsafe pointers

– Fact: vulnerabilities always happen on

type-unsafe pointers

Positive correlation

[1] Ccured: George C. Necula, Jeremy Condit, Matthew Harren, Scott McPeak, and Westley Weimer. 2005. CCured: type-safe retrofitting of legacy software. ACM Trans. Program. Lang. Syst. 27, 3 (May 2005), 477–526.
120

Solution: Vital (vulnerability-oriented MCTS)

• How to select/expand tree nodes?
– Use the number of unsafe pointers

– Fact: vulnerabilities always happen on

type-unsafe pointers

How to evaluate rewards?
– Use state simulation (+backpropagation)

– Reward: number of unsafe pointers

Positive correlation

[1] Ccured: George C. Necula, Jeremy Condit, Matthew Harren, Scott McPeak, and Westley Weimer. 2005. CCured: type-safe retrofitting of legacy software. ACM Trans. Program. Lang. Syst. 27, 3 (May 2005), 477–526.
121

Solution: Vital (vulnerability-oriented MCTS)

• How to select/expand tree nodes?
– Use the number of unsafe pointers

– Fact: vulnerabilities always happen on

type-unsafe pointers

How to evaluate rewards?
– Use state simulation (+backpropagation)

– Reward: number of unsafe pointers

Positive correlation

[1] Ccured: George C. Necula, Jeremy Condit, Matthew Harren, Scott McPeak, and Westley Weimer. 2005. CCured: type-safe retrofitting of legacy software. ACM Trans. Program. Lang. Syst. 27, 3 (May 2005), 477–526.

Simulation in KLEE

15

A

B C

True False

Simulation execution

terminates

Normal execution

122

Effective Path Exploration: outcome

36

Effective Path Exploration: outcome

36

Type-unsafe pointer operations

Effective Path Exploration: outcome

36

Vulnerable path

Type-unsafe pointer operations

Evaluation Results & Takeaways

37

Evaluation Results & Takeaways

37

– FastKLEE can reduce by up to 9.1% time

compared with the state-of-the-art

approach (i.e., KLEE)

Results for Direction 1: Can we do the
path search faster?

Evaluation Results & Takeaways

37

– FastKLEE can reduce by up to 9.1% time

compared with the state-of-the-art

approach (i.e., KLEE)

– Vital outperforms existing solutions by achieving

a speedup of up to 30x execution time and a

reduction of up to 20x memory consumption.

– Detected an unknown vulnerability (a new CVE)

Results for Direction 1: Can we do the
path search faster?

Results for Direction 2: Can we search
vulnerable paths first?

– Vital outperforms existing search strategies by

covering up to 90.03% unsafe pointers and

detecting up to 57.14% more unique memory errors.

Evaluation Results & Takeaways

37

– FastKLEE can reduce by up to 9.1% time

compared with the state-of-the-art

approach (i.e., KLEE)

– Vital outperforms existing solutions by achieving

a speedup of up to 30x execution time and a

reduction of up to 20x memory consumption.

– Detected an unknown vulnerability (a new CVE)

• Takeaways
– Combing type inference with symbolic execution could help do a better path exploration

Results for Direction 1: Can we do the
path search faster?

Results for Direction 2: Can we search
vulnerable paths first?

– Vital outperforms existing search strategies by

covering up to 90.03% unsafe pointers and

detecting up to 57.14% more unique memory errors.

Outline

38

p Background
Ø Software vulnerabilities
Ø Symbolic execution

p Motivation
Ø What limitations prevent current symbolic execution for vulnerability detection?
Ø Thesis statement and research objects

p Methodology
Ø SymLoc: A new memory model for symbolic execution
Ø FastKLEE and Vital: Two new path exploration for symbolic execution
Ø Cottontail: A new structured input generation for symbolic execution

p Future work
Ø Extension of current solutions
Ø Combine Program Analysis with GenAI

p Conclusion and Acknowledgment

Preliminary: online and offline

39

q Online and offline symbolic execution

Preliminary: online and offline

39

q Online and offline symbolic execution
Online (without initial seeds)

Preliminary: online and offline

39

q Online and offline symbolic execution

Fork	at	
branches

Online (without initial seeds)

Preliminary: online and offline

39

q Online and offline symbolic execution

Fork	at	
branches

Online (without initial seeds)

• Example: KLEE
Cristian Cadar, Daniel Dunbar, and Dawson Engler. 2008.” KLEE: unassisted and
automatic generation of high-coverage tests for complex systems programs”. In OSDI.

Preliminary: online and offline

39

q Online and offline symbolic execution

Fork	at	
branches

Online (without initial seeds) Offline (require initial seeds to setup)

• Example: KLEE
Cristian Cadar, Daniel Dunbar, and Dawson Engler. 2008.” KLEE: unassisted and
automatic generation of high-coverage tests for complex systems programs”. In OSDI.

Preliminary: online and offline

39

q Online and offline symbolic execution

One	path
at	a	time

Fork	at	
branches

Online (without initial seeds) Offline (require initial seeds to setup)

• Example: KLEE
Cristian Cadar, Daniel Dunbar, and Dawson Engler. 2008.” KLEE: unassisted and
automatic generation of high-coverage tests for complex systems programs”. In OSDI.

Preliminary: online and offline

39

q Online and offline symbolic execution

One	path
at	a	time

Re-executed
every	time

Fork	at	
branches

Online (without initial seeds) Offline (require initial seeds to setup)

• Example: KLEE
Cristian Cadar, Daniel Dunbar, and Dawson Engler. 2008.” KLEE: unassisted and
automatic generation of high-coverage tests for complex systems programs”. In OSDI.

Preliminary: online and offline

39

q Online and offline symbolic execution

One	path
at	a	time

Re-executed
every	time

Fork	at	
branches

Online (without initial seeds) Offline (require initial seeds to setup)

• Example: KLEE • Example: SAGE
Patrice Godefroid, Michael Y. Levin, and David Molnar. 2012. SAGE: whitebox fuzzing for
security testing. Commun. ACM.

Cristian Cadar, Daniel Dunbar, and Dawson Engler. 2008.” KLEE: unassisted and
automatic generation of high-coverage tests for complex systems programs”. In OSDI.

Preliminary: online and offline

39

q Online and offline symbolic execution

One	path
at	a	time

Re-executed
every	time

Fork	at	
branches

Online (without initial seeds) Offline (require initial seeds to setup)

• Example: KLEE • Example: SAGE
Patrice Godefroid, Michael Y. Levin, and David Molnar. 2012. SAGE: whitebox fuzzing for
security testing. Commun. ACM.

Cristian Cadar, Daniel Dunbar, and Dawson Engler. 2008.” KLEE: unassisted and
automatic generation of high-coverage tests for complex systems programs”. In OSDI.

Preliminary: compilation-based

40

Preliminary: compilation-based

40

q Prevalent concolic execution style
Ø Compilation-based concolic/symbolic execution: SymCC (Usenix Sec’20)

Ø Potentially (ideally) can be used to test any scale software systems

Preliminary: compilation-based

40

q Prevalent concolic execution style
Ø Compilation-based concolic/symbolic execution: SymCC (Usenix Sec’20)

Ø Potentially (ideally) can be used to test any scale software systems

Preliminary: compilation-based

40

q Prevalent concolic execution style
Ø Compilation-based concolic/symbolic execution: SymCC (Usenix Sec’20)

Ø Potentially (ideally) can be used to test any scale software systems

How can we perform concolic execution to generate
highly structured test inputs for systematically testing

parsing programs?

Challenges

41

Challenges
q #C1: what to solve?

Ø Not every path is worth solving (reduce resources/costs)

Ø Existing path constraint selection strategy is not structure-aware

41

Challenges
q #C1: what to solve?

Ø Not every path is worth solving (reduce resources/costs)

Ø Existing path constraint selection strategy is not structure-aware

q #C2: how to solve?
Ø Need to make sure resulting test cases are both satisfactory to constraints and valid to syntax

Ø Existing constraint solving only solve for satisfactory, which yields a large number of invalid inputs

41

Challenges
q #C1: what to solve?

Ø Not every path is worth solving (reduce resources/costs)

Ø Existing path constraint selection strategy is not structure-aware

q #C2: how to solve?
Ø Need to make sure resulting test cases are both satisfactory to constraints and valid to syntax

Ø Existing constraint solving only solve for satisfactory, which yields a large number of invalid inputs

q #C3: How to acquire new seeds after saturation?
Ø For a better continuous testing

Ø Existing measurements (e.g., using gcov) could be time-consuming to get during runtime

41

Key insights

42

Key insights
q Insight 1: unique implementation characteristic

Ø Can help distinguish structural program paths

Ø Select only interesting path constraints

42

Key insights
q Insight 1: unique implementation characteristic

Ø Can help distinguish structural program paths

Ø Select only interesting path constraints
Input string

MuJS implementation

Seed

42

Key insights
q Insight 1: unique implementation characteristic

Ø Can help distinguish structural program paths

Ø Select only interesting path constraints

q Insight 2: strong completion capabilities of LLMs
Ø Can help solve constraints smartly (more details later)

Ø Solve – Complete paradigm (our key contribution)

Input string

MuJS implementation

Seed

42

Key insights
q Insight 1: unique implementation characteristic

Ø Can help distinguish structural program paths

Ø Select only interesting path constraints

q Insight 2: strong completion capabilities of LLMs
Ø Can help solve constraints smartly (more details later)

Ø Solve – Complete paradigm (our key contribution)

Input string

MuJS implementation

Seed

42

Key insights
q Insight 1: unique implementation characteristic

Ø Can help distinguish structural program paths

Ø Select only interesting path constraints

q Insight 2: strong completion capabilities of LLMs
Ø Can help solve constraints smartly (more details later)

Ø Solve – Complete paradigm (our key contribution)

q Insight 3: knowledgeable resources for seeds
Ø Can help generate fresh seeds when saturated

Input string

MuJS implementation

Seed

42

Our solution: Cottontail

43

Our solution: Cottontail

• Three new techniques
• Structure-aware constraint selection: select only interesting path constraints (#C1)

43

Our solution: Cottontail

• Three new techniques
• Structure-aware constraint selection: select only interesting path constraints (#C1)

• LLM-driven constraint solving: smart LLM-solving + test case validator (#C2)

43

Our solution: Cottontail

• Three new techniques
• Structure-aware constraint selection: select only interesting path constraints (#C1)

• LLM-driven constraint solving: smart LLM-solving + test case validator (#C2)

• History-guided seed acquisition: capable seed generation (#C3)

43

Our solution: Cottontail

• Three new techniques
• Structure-aware constraint selection: select only interesting path constraints (#C1)

• LLM-driven constraint solving: smart LLM-solving + test case validator (#C2)

• History-guided seed acquisition: capable seed generation (#C3)

43

Novelty: Solve-Complete paradigm

44

Novelty: Solve-Complete paradigm

44

c = 30000; a = []; for (i = 0; i < 2 * c; i += 1)
{a.push(i%c);} a.sort(function (x, y) { r?

Novelty: Solve-Complete paradigm

44

c = 30000; a = []; for (i = 0; i < 2 * c; i += 1)
{a.push(i%c);} a.sort(function (x, y) { r?

c = 30000; a = []; for (i = 0; i < 2 * c; i += 1)
{a.push(i%c);} a.sort(function (x, y) {re

Step 1: syntax-aware solve process

Novelty: Solve-Complete paradigm

44

c = 30000; a = []; for (i = 0; i < 2 * c; i += 1)
{a.push(i%c);} a.sort(function (x, y) { r?

c = 30000; a = []; for (i = 0; i < 2 * c; i += 1)
{a.push(i%c);} a.sort(function (x, y) {re

Step 1: syntax-aware solve process
Tradition solver (Z3): r9

Novelty: Solve-Complete paradigm

44

c = 30000; a = []; for (i = 0; i < 2 * c; i += 1)
{a.push(i%c);} a.sort(function (x, y) { r?

c = 30000; a = []; for (i = 0; i < 2 * c; i += 1)
{a.push(i%c);} a.sort(function (x, y) {re

c = 30000; a = []; for (i = 0; i < 2 * c; i += 1)
{a.push(i%c);} a.sort(function (x, y) {return y;}
print(a[100]);```

Step 1: syntax-aware solve process

Step 2: syntax-aware complete process

Tradition solver (Z3): r9

Novelty: Solve-Complete paradigm

44

Solve and Complete for not only constraint satisfiability but also syntax validity

c = 30000; a = []; for (i = 0; i < 2 * c; i += 1)
{a.push(i%c);} a.sort(function (x, y) { r?

c = 30000; a = []; for (i = 0; i < 2 * c; i += 1)
{a.push(i%c);} a.sort(function (x, y) {re

c = 30000; a = []; for (i = 0; i < 2 * c; i += 1)
{a.push(i%c);} a.sort(function (x, y) {return y;}
print(a[100]);```

Step 1: syntax-aware solve process

Step 2: syntax-aware complete process

Tradition solver (Z3): r9

Evaluation Results & Takeaways

45

Evaluation Results & Takeaways

45

– Cottontail outperforms state-of-the-art

approaches (SymCC and Marco) by 14.15%

and 14.31% in terms of line coverage

coverage

RQ1: How does Cottontail perform
compared with baseline approaches?

Evaluation Results & Takeaways

45

– Cottontail outperforms state-of-the-art

approaches (SymCC and Marco) by 14.15%

and 14.31% in terms of line coverage

coverage

RQ1: How does Cottontail perform
compared with baseline approaches?

RQ2: Can Cottontail find new
vulnerabilities in practice?

– Cottontail detected 6 new vulnerabilities, showing

practical vulnerability detection capability

– Marco can only detect one and SymCC can detect four

Evaluation Results & Takeaways

45

– Cottontail outperforms state-of-the-art

approaches (SymCC and Marco) by 14.15%

and 14.31% in terms of line coverage

coverage

• Takeaways
– Smart LLM-driven constraint solving could help generate more complex test cases

RQ1: How does Cottontail perform
compared with baseline approaches?

RQ2: Can Cottontail find new
vulnerabilities in practice?

– Cottontail detected 6 new vulnerabilities, showing

practical vulnerability detection capability

– Marco can only detect one and SymCC can detect four

void buggy () {

// Vuln1: require complete memory modeling
void * from = malloc (100);
void * to = malloc (100);
if (to > from) { … }
if (from > to) {

vulnerable_func1();
}

// Vuln2: require handling path explosion
… // deeply nested

vulnerable_func2();
…

// Vuln3: require structured test inputs
if (input = “{….}”) {

// application logic
vulnerable_func3();

} else {
earlier_termination();

}
}

Retrospection of Motivation Example

46

void buggy () {

// Vuln1: require complete memory modeling
void * from = malloc (100);
void * to = malloc (100);
if (to > from) { … }
if (from > to) {

vulnerable_func1();
}

// Vuln2: require handling path explosion
… // deeply nested

vulnerable_func2();
…

// Vuln3: require structured test inputs
if (input = “{….}”) {

// application logic
vulnerable_func3();

} else {
earlier_termination();

}
}

Retrospection of Motivation Example

46

p SymLoc: new memory modeling

void buggy () {

// Vuln1: require complete memory modeling
void * from = malloc (100);
void * to = malloc (100);
if (to > from) { … }
if (from > to) {

vulnerable_func1();
}

// Vuln2: require handling path explosion
… // deeply nested

vulnerable_func2();
…

// Vuln3: require structured test inputs
if (input = “{….}”) {

// application logic
vulnerable_func3();

} else {
earlier_termination();

}
}

Retrospection of Motivation Example

46

p SymLoc: new memory modeling

p FastKLEE: efficient path exploration

p Vital: effective path exploration

void buggy () {

// Vuln1: require complete memory modeling
void * from = malloc (100);
void * to = malloc (100);
if (to > from) { … }
if (from > to) {

vulnerable_func1();
}

// Vuln2: require handling path explosion
… // deeply nested

vulnerable_func2();
…

// Vuln3: require structured test inputs
if (input = “{….}”) {

// application logic
vulnerable_func3();

} else {
earlier_termination();

}
}

Retrospection of Motivation Example

46

p SymLoc: new memory modeling

p FastKLEE: efficient path exploration

p Vital: effective path exploration

p Cottontail: smart test input generation

void buggy () {

// Vuln1: require complete memory modeling
void * from = malloc (100);
void * to = malloc (100);
if (to > from) { … }
if (from > to) {

vulnerable_func1();
}

// Vuln2: require handling path explosion
… // deeply nested

vulnerable_func2();
…

// Vuln3: require structured test inputs
if (input = “{….}”) {

// application logic
vulnerable_func3();

} else {
earlier_termination();

}
}

Retrospection of Motivation Example

46

But not all vulnerabilities can be caught

p SymLoc: new memory modeling

p FastKLEE: efficient path exploration

p Vital: effective path exploration

p Cottontail: smart test input generation

Outline

47

p Background
Ø Software vulnerabilities
Ø Symbolic execution

p Motivation
Ø What limitations prevent current symbolic execution for vulnerability detection?
Ø Thesis statement and research objects

p Methodology
Ø SymLoc: A new memory model for symbolic execution
Ø FastKLEE and Vital: Two new path exploration for symbolic execution
Ø Cottontail: A new structured input generation for symbolic execution

p Future work
Ø Extension of current solutions
Ø Combine program analysis with GenAI

p Conclusion and Acknowledgment

Future work

48

Future work

48

Ø Extend SymLoc with more realistic memory modeling

Ø Extend Vital into greybox/hybrid as targets to guide directed fuzzing

Ø Extend Cottontail to support complex input formats (e.g., binaries)

p Extension of Current Solutions

Future work

48

Ø Extend SymLoc with more realistic memory modeling

Ø Extend Vital into greybox/hybrid as targets to guide directed fuzzing

Ø Extend Cottontail to support complex input formats (e.g., binaries)

p Extension of Current Solutions

p Program analysis + GenAI

Future work

48

Ø Extend SymLoc with more realistic memory modeling

Ø Extend Vital into greybox/hybrid as targets to guide directed fuzzing

Ø Extend Cottontail to support complex input formats (e.g., binaries)

– New testing engine that can be more general (e.g., across different langauges)

p Extension of Current Solutions

p Program analysis + GenAI

Future work

48

Ø Extend SymLoc with more realistic memory modeling

Ø Extend Vital into greybox/hybrid as targets to guide directed fuzzing

Ø Extend Cottontail to support complex input formats (e.g., binaries)

– New testing engine that can be more general (e.g., across different langauges)

– Combine LLM with formal verification techniques to guarantee the robustness

p Extension of Current Solutions

p Program analysis + GenAI

Future work

48

Ø Extend SymLoc with more realistic memory modeling

Ø Extend Vital into greybox/hybrid as targets to guide directed fuzzing

Ø Extend Cottontail to support complex input formats (e.g., binaries)

– New testing engine that can be more general (e.g., across different langauges)

– Combine LLM with formal verification techniques to guarantee the robustness

– Practical hybrid selective symbolic execution for mixed programs

• New software ecosystem (human written code + AI generated code)

p Extension of Current Solutions

p Program analysis + GenAI

Outline

49

p Background
Ø Software vulnerabilities
Ø Symbolic execution

p Motivation
Ø What limitations prevent current symbolic execution for vulnerability detection?
Ø Thesis statement and research objects

p Methodology
Ø SymLoc: A new memory model for symbolic execution
Ø FastKLEE and Vital: Two new path exploration for symbolic execution
Ø Cottontail: A new structured input generation for symbolic execution

p Future work
Ø Extend key ideas to hybrid fuzzing
Ø Combine Program Analysis with GenAI

p Conclusion and Acknowledgment

Conclusion

50

Conclusion

50

• Research impact
– Four open-sourced tools to foster further symbolic execution research

– 10+ new memory related vulnerabilities are detected (with 7 new CVE assigned)

• All of them have been fixed by developers so far
[1] Haoxin Tu, Lingxiao Jiang, and et.al, “Concretely Mapped Symbolic Memory Locations for Memory Error Detection” (IEEE TSE).
[2] Haoxin Tu, Lingxiao Jiang, and et.al,, “FastKLEE: Faster Symbolic Execution via Reducing Redundant Bound Checking of Type-Safe Pointers”, in Tool Demonstrations Track of FSE 2022.
[3] Haoxin Tu, Lingxiao Jiang and et.al,. "Vital: Vulnerability-Oriented Symbolic Execution via Type-Unsafe Pointer-Guided Monte Carlo Tree Search." arXiv:2408.08772 (2024).
[4] Haoxin Tu, Seongmin Lee, and et.al. "Large Language Model-Driven Concolic Execution for Highly Structured Test Input Generation." arXiv:2504.17542 (2025).

51

Acknowledgement

52

Thank you & Questions?
Boosting Symbolic Execution for Vulnerability Detection

Dissertation Defense by Haoxin Tu (May 9th, 2024)

SymLoc [1]
(TSE’24)

FastKLEE [2]
(FSE’22 Demonstration)

Vital [3]
(under review)

Cottontail [4]
(under review)

Software
Under Test Vulnerabilities

Objective 1: complete and
precise memory model

Objective 2: efficient and
effective path exploration

Objective 3: effective
structured input generation

Input Output

References

53

[1] Automated Test Generation: “A Journey from Symbolic Execution to Smart Fuzzing and Beyond” (Keynote by Koushik Sen)
[2] Zhide Zhou, Zhilei Ren, Guojun Gao, He Jiang. “An empirical study of optimization bugs in GCC and LLVM”. JSS, 2021.
[3] James C. King. 1976. Symbolic execution and program testing. Commun. ACM 19, 7 (July 1976), 385–394.
[4] Roberto Baldoni, Emilio Coppa, Daniele Cono D’elia, Camil Demetrescu, and Irene Finocchi. 2018. “A Survey of Symbolic Execution
Techniques”. ACM Computer Survey. 51, 3, Article 50 (July 2018), 39 pages.
[5] Seo, Hyunmin, and Sunghun Kim. "How we get there: a context-guided search strategy in concolic testing." Proceedings of the 22nd
ACM SIGSOFT International Symposium on Foundations of Software Engineering. ACM, 2014.
[6] Cristian Cadar, Daniel Dunbar, and Dawson Engler. 2008.” KLEE: unassisted and automatic generation of high-coverage tests for
complex systems programs”. In Proceedings of the 8th USENIX conference on Operating systems design and implementation (OSDI'08).
USENIX Association, USA, 209–224.
[7] C. Cadar and K. Sen, “Symbolic execution for software testing: three decades later,” Commun. ACM, vol. 56, no. 2, pp. 82–90, 2013.
[8] V. Chipounov, V. Kuznetsov, and G. Candea, “S2E: a platform for in-vivo multi-path analysis of software systems,” in Proceedings of
the sixteenth international conference on Architectural support for programming languages and operating systems, New York, NY, USA, Mar.
2011, pp. 265–278.
[9] S. Poeplau and A. Francillon, “SymQEMU: Compilation-based symbolic execution for binaries,” presented at the in Proceedings of the
2021 Network and Distributed System Security Symposium, 2021.
[10] Y. Shoshitaishvili et al., “SOK: (State of) The Art of War: Offensive Techniques in Binary Analysis,” in 2016 IEEE Symposium on
Security and Privacy (SP), May 2016, pp. 138–157.
[11] S. Poeplau and A. Francillon, “Symbolic execution with SymCC: Don’t interpret, compile!,” in 29th USENIX Security Symposium, 2020,
pp. 181–198.
[12] David Trabish, Timotej Kapus, Noam Rinetzky, and Cristian Cadar. 2020. “Past-sensitive pointer analysis for symbolic execution”. In
Proceedings of the 28th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE 2020). New York, NY, USA, 197–208.

