
REMGEN: Remanufacturing a Random Program
Generator for Compiler Testing

Haoxin Tu1,2, He Jiang1, Xiaochen Li1, Zhilei Ren1, Zhide Zhou1, and Lingxiao Jiang2

1School of Software, Dalian University of Technology, Dalian, China
2Singapore Management University, Singapore

haoxintu@gmail.com, {jianghe, xiaochen.li, zren}@dlut.edu.cn, cszide@gmail.com, lxjiang@smu.edu.sg

Abstract—Program generators play a critical role in generat-
ing bug-revealing test programs for compiler testing. However,
existing program generators have been tamed nowadays (i.e.,
compilers have been hardened against test programs generated
by them), thus calling for new solutions to improve their
capability in generating bug-revealing test programs. In this
study, we propose a framework named REMGEN, aiming to
Remanufacture a random program Generator for this purpose.
REMGEN addresses the challenges of the synthesis of diverse
code snippets at a low cost and the selection of the bug-
revealing code snippets for constructing new test programs. More
specifically, REMGEN first designs a grammar-aided synthesis
mechanism to synthesize diverse code snippets. Then, a grammar
coverage-guided strategy is used to select the most diverse
code snippets that may be bug-revealing. As a case study to
demonstrate the effectiveness of the REMGEN framework, we
have remanufactured an old C program generator CCG and
named it REMCCG. Our evaluation results show that REMCCG
can generate significantly more bug-revealing test programs than
the original CCG; notably, REMCCG has found 56 new bugs for
two mature compilers (i.e., GCC and LLVM), of which 37 have
already been fixed by their developers.

Index Terms—Reliability, software testing, compiler testing,
automated testing, random program generator, compiler defect

I. INTRODUCTION

Compiler bugs may have catastrophic consequences on
software systems [1]. However, due to the tremendous lines
of code and the sophisticated logic in compilers, discovering
compiler bugs is non-trivial. To improve the reliability of
compilers, a rich collection of studies [2]–[14] is proposed
to construct diverse test programs for testing compilers.

As shown in Fig. 1, the prevalent test program construction
approaches for compiler testing can be classified into two
categories: generation-based approaches (program generators,
e.g., CCG [3]) and mutation-based approaches (program mu-
tators, e.g., Hermes [4]). Both the two categories usually start
from a program generator. In the former, a generation-based
approach aims to design aggressive program generators to
directly produce bug-revealing test programs (i.e., route 1
in Fig. 1). In the latter, a mutation-based approach regularly
takes two steps to obtain test programs. The first step is to
collect a seed program, which usually comes from program
generators. In the second step, different mutations (i.e., code

* He Jiang is the corresponding author. Haoxin Tu’s first affiliation is with
the School of Software, Dalian University of Technology.

Fig. 1: The general idea of REMGEN and the two prevalent
approaches toward constructing test programs for compiler testing

snippets insertion/deletion) upon the seed program are con-
ducted to generate bug-revealing test programs, which follow
the route 2 in Fig. 1. Based on the above widespread usage
of program generators, it is clear that high-quality generators
are the foundation of both generation-based and mutation-
based approaches; they can have a significant impact on
detecting new bugs in compilers. Typical program generators
include CCG [3], Csmith [2], and YARPGen [8]. CCG is
designed for generating syntactically valid C programs, while
Csmith and YARPGen target generating test programs without
undefined and unspecified behaviors. All the above program
generators have discovered hundreds of compiler bugs and
they are expected to produce bug-revealing test programs to
consistently make compilers reliable.

Unfortunately, existing program generators seem to be
tamed and can hardly uncover new bugs directly anymore.
For example, Csmith [2] is one of the most notable program
generators, but prior studies show that current production
compilers are already resilient to it [4], [5]. In addition, a
plurality of active researchers/developers is profoundly com-
plaining about this problem. For instance, the developer of
CCG [3] (an old program generator that has existed for more
than 10 years) mentioned that “Compilers have now caught
up with CCG (since it’s been pretty hard to spot crashes last
time I tried)”1. John Regehr, one of the creators of Csmith,
said, “I hadn’t run Csmith for a while and it turns out
LLVM is now amazingly resistant to it, ran a million tests
overnight without finding a crash or miscompilation”2. Also,
Dmitry Babokin, one of the contributors of YARPGen [8],
followed the comment with “Same with YARPGen”3. This is
reasonable as maintainers of modern compilers (e.g., GCC
and LLVM) are actively and promptly fixing reported bugs.

1https://github.com/Mrktn/ccg/blob/master/README
2https://twitter.com/johnregehr/status/1134866965028196352
3https://twitter.com/DmitryBabokin/status/1134907976085516290

https://github.com/Mrktn/ccg/blob/master/README
https://twitter.com/johnregehr/status/1134866965028196352
https://twitter.com/DmitryBabokin/status/1134907976085516290

A large portion of bugs (directly or indirectly) discovered by
program generators have been fixed, making compilers robust
to the test program generation mechanism in these program
generators [2], [4]–[6], [9]. Under such circumstances, is it
possible to improve the bug-finding capability of tamed
program generators towards compiler testing?

Challenges. To investigate the above question, two main
challenges need to be addressed for making those generators
produce bug-revealing test programs again. The first one is
the synthesis of diverse code snippets at a low cost.
Although random program generators can generate numerous
code snippets in seconds, it is non-trivial to synthesize diverse
code snippets to reveal compiler bugs, as we do not know what
are the characteristics of bug-revealing code snippets [15],
[16]. Besides, the costs of existing mutation-based approaches
(e.g., Hermes [4]) are relatively high as they need to collect the
required context information (e.g., names and types of global
or local variables) by laboriously profiling the seed program
and maintaining the validity of mutated test programs based on
the context. The second challenge is the selection of the bug-
revealing (i.e., more likely to trigger bugs) code snippets.
Only a few constructed test programs can trigger bugs [2],
[6], [15], [17]. To save computing or human resources, it is
necessary to select the code snippets that are more effective
for constructing new bug-revealing test programs.

Solutions. In this study, we migrate the idea of remanu-
facturing a product (a process to make an old product new,
see more details in Section II-B) to a program generator
and propose a framework named REMGEN for this purpose.
In general, two intuitions are behind RemGen: (1) certain
capabilities (i.e., the new valuable code snippets generation
and the lightweight context reservation) in existing program
generators could help construct new code snippets that may
exert deeper code in compilers; (2) effectively leveraging those
capabilities and introducing a “grammar coverage” metric
to guide the construction (rather than a random generation)
of test programs, which could detect more bugs in those
deeper code regions in compilers. Specifically, in REMGEN,
we leverage those capabilities in existing generators and design
two new components for effective remanufacturing. The first
component is called diverse code snippets synthesis, which
uses a grammar-aided code snippets synthesis for producing
various kinds of code snippets. In particular, this component
first reserves the context (e.g., local and global variables in a
function) that is produced during the generation process in a
program generator and then leverages the context to synthesize
new code snippets by invoking the built-in functions in the
generator, thus addressing the first challenge. To address the
second challenge, the component of the bug-revealing code
snippets selection is proposed. It adopts a grammar coverage
metric to record the use frequency of grammar rules of selected
code snippets during the synthesis. Such recorded coverage
is used to measure the diversity of every synthesized code
snippet. Guided by the coverage metric, REMGEN selects the
code snippets with the most diverse grammar coverage to
construct new bug-revealing test programs.

To assess the effectiveness of REMGEN, we remanufactured
a tamed program generator CCG into REMCCG under our
proposed framework (see Fig. 1), and extensively evaluated
the capability of REMCCG in generating bug-revealing test
programs over two mainstream compilers (i.e., GCC and
LLVM). First, we evaluate its capability in boosting prevalent
program construction approaches over old versions of com-
pilers. Specifically, when compared with the generation-based
approach (i.e., CCG [3]), REMCCG can find 16% and 11%
more bugs than CCG in GCC and LLVM, respectively. For the
comparison with the mutation-based approach (i.e., Hermes
[4]), we use CCG and REMCCG to generate seed programs
and conduct the same mutation operations to produce test
programs for compiler testing. The results show that the seed
programs generated by REMCCG can help Hermes to yield
14% and 11% more bugs than CCG in GCC and LLVM,
respectively. Then, we run REMCCG over the development
versions of GCC and LLVM to evaluate its practical bug-
finding capability. REMCCG has reported 56 new bugs (37
out of them have been fixed already) for the compilers. It
is worth noting that many of the reported bugs are serious,
deep, and long-latent bugs (5 bugs have been marked with the
highest severity and 2 bugs are lurking for 1 year and 3 years).

In summary, this paper makes the following contributions:
• To the best of our knowledge, we first propose the idea of

remanufacturing a program generator for compiler testing.
• We design REMGEN which leverages the diverse code snip-

pets synthesis and the bug-revealing code snippets selection
for effectively remanufacturing a program generator.

• We implemented the tool REMCCG4, a case study of
REMGEN, and conducted extensive experiments to show
the effectiveness of REMCCG. In practice, REMCCG has
found 56 (37 fixed already) new bugs in two compilers.
The remainder of this paper is organized as follows. Section

II introduces the background and an illustrative example.
Section III describes our framework REMGEN. Evaluation
results are presented in Section IV. The discussion, threats,
and related work are described in Sections V-VII, respectively.
Section VIII concludes this paper with future work.

II. BACKGROUND AND ILLUSTRATIVE EXAMPLE

In this section, we first introduce the background of program
generators and remanufacturing. Then, we present the idea
of REMGEN and use an illustrative example to highlight the
advantages of the new generator remanufactured by REMGEN.

A. Program Generators

Program generators, CCG [3], Csmith [2], and YARPGen
[8], allow users to create brand new test programs for compiler
testing. These generators share the same simplified workflow
as shown in Fig. 2. Typically, the program generator starts by
initializing a seed number (1). Under the given seed number,
a test program is deterministically generated (i.e., the gener-
ated test program is the same when executing the program

4REMCCG is publicly available at https://github.com/haoxintu/RemCCG.

2

https://github.com/haoxintu/RemCCG

Fig. 2: The basic workflow of a program generator

generator with the same seed number). To generate a test
program, the program generator first creates a global context
(2), which contains the basic properties in a specific scope
(e.g., variable names in the global scope). Next, the program
generator builds functions based on the current context. Inside
the function building, a block is built with a local context
(3), which includes the definitions of local variables; some
statements are also produced inside the block (4). When all
functions are created, the program generator prints the fresh
test program (5). Users can redirect the stdout to a source
file and use this file for compiler testing.

It is worth noting that those program generators hold
at least two important and useful capabilities. First, they
support various built-in functions (e.g., makeBlock and
makeExpression) to generate different new valuable code
snippets. Typically, by invoking those functions multiple times,
various code snippets can be generated. Second, the context
(i.e., one of the parameters used in the built-in functions) used
in generating code snippets can be reserved and then reused
in a lightweight manner. For example, we can directly reserve
the context and call different built-in functions to generate
required code snippets and then use them to synthesize new
test programs. Due to the hardness of the creation of such
tools (e.g., Csmith [2] was implemented for more than two
years), such hidden capabilities should be effectively activated
in generators so as to continually detect new compiler bugs.
However, the above capabilities are not fully studied yet.

B. Remanufacturing

Remanufacturing is a process of rebuilding a used product
into a “like-new” product, aiming to make a used product
effective again, which is being regarded as a sustainable
mode of manufacturing because it can be profitable and less
harmful to the environment than conventional manufacturing
[18], [19]. It has been successfully adopted in many areas,
e.g., automobile parts, aerospace, and medical devices [19]–
[21]. Typically, remanufacturing can be broadly performed in
the following three processes:
(1) Preparation for remanufacturing. The task of this pro-

cess is to investigate and assess the feasibility of the old
product for remanufacturing, including inspecting, disas-
sembling, and preprocessing subparts of the old product.

(2) Remanufacturing. This process focuses on remanufactur-
ing by introducing new components into disassembled parts
and then reassembling the new parts together.

(3) Testing the remanufactured product. This process tests
the effectiveness of the remanufactured product.

C. The idea of REMGEN and an illustrative example

1) The idea of REMGEN: In this study, we propose REM-
GEN to migrate the idea of remanufacturing a product to a
program generator for compiler testing. Our key insight is
that by leveraging the hidden capabilities in existing program
generators, we can potentially make tamed generators effective
again. Specifically, by doing so, REMGEN can have at least the
following three benefits. First, by directly reserving the context
from generators, we do not need to perform heavy profiling
to extract context information like existing approaches, e.g.,
Hermes [4], (see more details in Section III-B1). Second,
we do not need to take extra care to maintain validity of
code when conducting code synthesis as the old and new
code snippets share the same semantic context. Third, the
code snippets generated by built-in functions are notoriously
valuable for revealing new compiler bugs as existing program
generators are proven to be effective for compiler testing.
Benefited from the capabilities, in REMGEN, we mainly apply
the three corresponding processes mentioned in Section II-B in
traditional remanufacturing on a program generator as follows:
(1) Preparation process. We first inspect whether the source

code of the generator is available and can be built and run
in our machine. If yes, we then disassemble the generator
by dividing different built-in functions mentioned in Section
II-A into subparts (e.g., makeBlock). Lastly, we prepro-
cess those subparts to make them easy to integrate with
other parts (e.g., the newly designed components).

(2) Remanufacturing process. We design two new compo-
nents, i.e., the diverse code snippets synthesis and the bug-
revealing code snippets selection, into the input generator,
thus enabling the remanufacturing of an old generator into a
new generator. This is the main process of remanufacturing.

(3) Testing process. We test the bug-finding capability of the
remanufactured generator.
In summary, given an old program generator (e.g., CCG), by

remanufacturing it under REMGEN, the remanufactured gener-
ator (e.g., REMCCG) can generate bug-revealing test programs
again. Next, we use an example to show the limitations of the
existing approaches and the advantages of REMCCG.

2) An illustrative example: Fig. 3 shows a performance bug
in LLVM triggered by a bug-revealing test program generated
by REMCCG. For the sake of presentation, we only show its
reduced version. The bug-revealing code snippet synthesized
by REMCCG is in between Lines 4-15. Among these lines,
Lines 9-14 (highlighted in gray) are generated by calling the
built-in function (i.e., makeBlock) in program generators.

The root cause of the bug. The bug-revealing program
makes the trunk version of LLVM spend an infinite compile-
time under -O3. The root cause of this bug is that LLVM
misuses an unbound llvm.assume scanning when performing
the “loop unrolling” optimization, an important and widely-
used loop optimization technique in modern compilers [22].
Specifically, the llvm.assume instruction allows the optimizer
to assume that the provided condition is true. In this case,
LLVM applies an unlimited assume scanning on the if-branch

3

Fig. 3: LLVM 13.0 hangs at compile time (#49171)

at Line 11, thus causing the compiler-time explosion issue.
Developers have fixed this bug promptly.

Limitations in existing approaches. This bug is difficult
to be triggered by the generation-based approach CCG [3],
as the bug disappears after removing our synthesized code
snippet (between Lines 4-6). Besides, existing mutation-based
approaches (e.g., Orion [6], Athena [5], or Hermes [4]) are also
limited to generating such a code snippet for the following
reasons. First, Orion and Athena can only modify the dead
region of the code, while the bug-revealing code snippet in the
example is in a live code region. Second, although Hermes is
able to insert code snippets in the live code region, such code
snippets synthesized by Hermes are restricted. For example,
the local variable f in Line 9 can not be synthesized under
Hermes’s synthesizing strategy. Worse still, the time cost for
code snippets synthesis in Hermes is relatively high which
may further burden generating bug-revealing test programs.

Advantages of our approach. REMCCG is capable of
generating such code snippets to trigger compiler bugs. Here,
REMGEN is a framework that remanufactures a program gen-
erator by appending two new components (i.e., diverse code
snippets synthesis and bug-revealing code snippet selection) to
the existing workflow of the program generator. Specifically,
during code snippets synthesis, REMCCG first reserves (rather
than extracting from source code) the global and local context,
including all possible variables such as a,b,c,d, and f
from the program generator. Then, REMCCG invokes the code
snippets synthesis component to yield two for-loop statements,
along with code snippets produced by executing makeBlock
using the reserved context. Finally, the whole code snippets are
integrated on Line 3 onward to generate a new bug-revealing
test program. Noted that during the generation process, the
number of synthesized code snippets could be large. We
leverage the component of the bug-revealing code snippet
selection to select the most diverse to construct new programs.
To do so, we introduce the grammar coverage to differentiate
various code snippets. For example, in Fig. 3, we maintain a
recording list (i.e., {0,0,0,2,0,0,0,0,0,0,0}), where
each dimension represents a specific grammar rule, and the
values show the frequency of the grammar rule in the code
snippet. Specifically, the value 2 in the list means that two
for-loop grammar rules are covered in this code snippet (after
excluding code snippets synthesized by the built-in functions).

We update the list during the synthesis process and use it as
a metric for guiding the selection.

Note that existing generators may still generate similar code
snippets to the code synthesized by REMCCG in theory.
However, it is only possible if those program generators
tailor their designs for different purposes. For Csmith [2] and
YARPGen [8], they are designed to generate test programs free
of undefined behaviors, which is a relatively strict requirement
that may decrease the diversity of test programs. For CCG
[3], it may generate test programs similar to ours but it
is practically hard due to too much randomness of its test
program generation. In contrast, our approach targets gener-
ating more diverse and complex test programs (i.e., syntactic
valid programs which may include undefined behaviors) that
complement Csmith [2] and YARPGen [8].

III. APPROACH

In this section, we first present the overview of our proposed
REMGEN. Then, we detail the processes (i.e., preparation,
remanufacturing, and testing) designed in the framework.

Overview. The high-level architecture of REMGEN is pre-
sented in Fig. 4, which generally takes an old program
generator as input and outputs certain potential compiler
bugs. Specifically, the main workflow in REMGEN can be
separated into three major processes: (1) a preparation process
to investigate the feasibility of the input program generator
for remanufacturing, including inspecting, disassembling, and
preprocessing subparts of the input generator, (2) a reman-
ufacturing process to append two new components (i.e., 6
code snippets synthesis and 7 code snippets selection) into
the original workflow of the input generator (as shown in
Fig. 2), then reassemble all the components together to a new
remanufactured generator, and (3) a testing process to eval-
uate the effectiveness of the remanufactured generator, either
conducting generation-based or mutation-based approaches to
test compilers. Next, we describe each process in detail.

A. Preparation process

The task of preparation is to investigate and assess the
feasibility of the input program generator in terms of remanu-
facturing. Generally, we assess the remanufacturing of an old
program generator by manually building and running it. We
also perform a code review to confirm whether it has the same
workflow as presented in Fig. 2. It is worth noting that such
an assessment does not need to involve too much laboratory
work, as the developers of existing program generators (e.g.,
CCG [3], Csmith [2], and YARPGen [8]) have spent many
years implementing the tool. Therefore, the documents of the
building and running tutorial and code styles of them are easy
to follow and understand. Specifically, as shown in Fig. 4, we
perform the preparation as follows:
Inspect: Checking the functionality from the “appearance” of

the program generator, e.g., checking whether the program
generator can be built and run normally.

4

https://bugs.llvm.org/show_bug.cgi?id=49171

Fig. 4: The high-level architecture of REMGEN

Disassemble: Decomposing program generation components
to be modularized, e.g., separating the logic of different ex-
pressions/statements/blocks building in the implementation
of the program generator (as shown in Fig. 2).

Preprocess subparts: Reconstructing required components
(e.g., built-in functions in program generators) to be easily
integrated with other components. For example, the context
(either global or local) should be smoothly collected as an
external variable so as to be used in the new components.
After the preparation process, two built-in functions

makeBlock and makeExpression are prepared for the
following remanufacturing process, as they can generate dif-
ferent kinds of supported statements/expressions in the old
generators. Therefore, it is sufficient to use them to synthesize
diverse code snippets for our purpose.

B. Remanufacturing process

In this subsection, we first describe the fundamental work-
flow of the remanufacturing process. Then, we detail two main
components of REMGEN: the diverse code snippets synthe-
sis component and the bug-revealing code snippet selection
component. As shown in Fig. 4, traces 1 , 2 , 3 , 4 , and
5 are the same in the original generator as presented in
Fig. 2. which are the subparts disassembled from a program
generator. Apart from the existing components in the program
generator, two new components (i.e., the code snippets synthe-
sis component 6 and the code snippet selection component
7) are designed respectively for synthesizing diverse code
snippets and selecting the most diverse one for constructing
new bug-revealing test programs. Appending to the two new
components, all the disassembled subparts are reassembled to
a new remanufactured program generator for compiler testing.

1) Diverse code snippets synthesis: This component is
designed for synthesizing diverse code snippets at a low cost.
It takes the required context and a set of grammars as inputs,
and outputs a set of diverse code snippets. In this subsection,
we first give the metric definition of “diversity”, which is
adapted from related studies, i.e., the grammar coverage of
code snippets. Then, we illustrate our strategy for reserving the

required context, which is one of the main capabilities used in
REMGEN for reducing the synthesizing overhead compared
with existing approaches. Finally, we present the detailed
synthesis process.

Definition of grammar coverage. The essence of REMGEN
is to synthesize new code snippets from the code snippets
generated by calling built-in functions in the tamed program
generators and integrate the new code snippets into the com-
plete test program. Thus, it is necessary to use a metric to
distinguish different code snippets so as to select the most
diverse one to construct new test programs. To measure the
diversity of those code snippets quantitatively and efficiently,
we adopt a metric, i.e., grammar coverage, from related works
in this study. We mainly leverage this metric to approximate
the complexity/expressiveness of the generated test programs.
We follow the underlying assumption in existing studies [2],
[8] that complex/expressive test programs are more likely to
exercise the deep code regions in compilers thus potentially
triggering more compiler bugs. Specifically, we define the
metric grammar coverage for distinguishing various code
snippets as follows:
DEFINITION 3.1 (Grammar coverage) the grammar cov-
erage of a code snippet CS refers to the number of grammar
rules invoked during the synthesis process:

𝐺 (CS) = (𝐺1, 𝐺2, . . . , 𝐺𝑖 , . . .),

where 𝐺 is a recording list which represents the frequency
of the grammar rule used in the code snippet. Specifically,
it contains a set of grammar rules 𝐺𝑖 , and 𝑖 represents
a specific grammar rule. For example, 𝐺 in Fig. 3 is
“{0,0,0,2,0,0,0,0,0,0,0}”, which means only two
for-loop statements are used in the synthesized code snippet.
This metric can be used to represent various kinds of code
snippets; a code snippet with a larger grammar coverage
implies that it may have a more complex structure, which is
likely to exercise the compilers more thoroughly.

Context reservation. Before synthesizing new code snip-
pets, we need to collect the required code contexts. Typically,
there are two kinds of contexts to be considered based on

5

the different scopes of program semantics. One is the context
in the local area (i.e., inside a function definition); another
is the context in the global area (i.e., outside a function
definition). Generally, a global context (e.g., global variables)
can be used in both global and local areas. However, a local
context can only be used in a local area, because assigning a
local variable outside the definition scope could introduce an
“undefined variable” error. Existing strategies usually collect
the context of code snippets by laboriously extracting/profiling
source code [4], [5]. However, such strategies are proven to
be time-consuming. For example, the previous study shows
that it takes 1.7s on average (at most 6s) to perform profiling
for synthesizing a new test program, while it usually takes less
than 1s in generating the seed program [4].

To reduce the overhead of the context collection, unlike
existing approaches, we reserve the required context from
the input program generator in a more lightweight manner.
Specifically, as shown in Fig. 4, since we have disassembled
the generators into different subparts, we can easily obtain and
reserve the global or local context from the input program
generator. A minor issue we need to consider is to distinguish
the different uses of the context based on different scopes
(i.e., global or local). For example, it works well if we use
a global context to generate code snippets and then integrate
them into a function definition. However, a local context can
only be used in a local area due to the reason aforementioned.
In this study, we reserve both global and local contexts before
synthesizing new code snippets. In particular, our reservation
strategy has two advantages. First, it can naturally guarantee
the validity of the generated code snippets, because those code
snippets are synthesized under the same semantic context.
Second, the collection is lightweight, as we do not need to
profiling the original test program for extracting the required
context. Given the reserved contexts of an original code
snippet, we start to synthesize diverse code snippets.

Code snippets synthesis. One straightforward solution is
to directly synthesize new code snippets by invoking the
built-in functions in program generators and integrating code
snippets into a test program (i.e., the way works by the tamed
generators). However, it is insufficient for constructing bug-
revealing test programs (more details in Section V). Therefore,
we propose a grammar-aided synthesis strategy to mitigate the
limitation. Specifically, our code snippets synthesis is aided by
a set of grammars (C grammars in this study). The synthesis
is built top-down based on the reserved context. Algorithm 1
presents the detailed process of the code snippets synthesis.
The synthesis takes a context C, a set of grammars T, and a
bound N as inputs; it outputs a set of code snippets CS along
with the updated grammar coverage 𝐺 for each code snippet.
The bound N is used to limit the number of code snippets.
Specifically, the process is driven by the function synCode.
synCode first initializes a grammar coverage 𝐺 and a depth
counter depth in Lines 2-3. Then, it synthesizes new state-
ment sequences by calling the function synStmtSeq with the
arguments of the context, the depth counter, and the grammar
(Line 6). When the bound is reached, the synthesis is done

Algorithm 1: Code snippets synthesis in REMGEN
Input: a context C, a set of grammars T, and a bound N
Output: a set of code snippets CS (with grammar coverage 𝐺)

1 Function synCode(C,T,N):
2 𝐺 [11] ← ∅; // initialize a coverage vector
3 𝑑𝑒𝑝𝑡ℎ = 0; // initialize a variable depth
4 𝑖 = 0; // initialize a counter
5 while i < N do
6 𝐶𝑆𝑖 (𝐺𝑖) = synStmtSeq(𝐶, 𝑑𝑒𝑝𝑡ℎ, 𝑇) ;

7 Function synStmtSeq(𝐶𝑜𝑛𝑡𝑒𝑥𝑡 𝑐𝑐, 𝑖𝑛𝑡 𝑑𝑒𝑝𝑡ℎ, 𝑇):
8 𝑖 = 𝑖 + 1;
9 if random(0,1) then

10 𝐶𝑆 (𝐺𝑖) = synStmt(𝑐𝑐, 𝑑𝑒𝑝𝑡ℎ, 𝑇) ;
11 else
12 𝐶𝑆 (𝐺𝑖) = synStmtSeq(𝑐𝑐, 𝑑𝑒𝑝𝑡ℎ, 𝑇) ;
13 return 𝐶𝑆 (𝐺𝑖) ;
14 Function synStmt(𝐶𝑜𝑛𝑡𝑒𝑥𝑡 𝑐𝑐, 𝑖𝑛𝑡 𝑑𝑒𝑝𝑡ℎ, 𝑇):
15 if 𝑑𝑒𝑝𝑡ℎ > 𝑚𝑎𝑥_𝑑𝑒𝑝𝑡ℎ then
16 return 𝐶𝑆 (𝐺𝑖) ;

// Randomly choose a statement to synthesize
17 switch T.type do
18 case AssignStmt do synAssignStmt(𝑐𝑐); 𝐺𝑖 [0]++;
19 case WhileStmt do synWhileStmt(𝑐𝑐, 𝑑𝑒𝑝𝑡ℎ) ;𝐺𝑖 [1]++;
20 ... // handle other statements
21 case CompStmt do synCompoundStmt(𝑐𝑐);𝐺𝑖 [9]++;
22 case JumpStmt do synJumpStmt(𝑐𝑐, 𝑑𝑒𝑝𝑡ℎ) ;𝐺𝑖 [10]++;

23 return 𝐶𝑆 (𝐺𝑖) ;

and a set of code snippets CS will be the candidates for
constructing new bug-revealing test programs.

The function synStmtSeq in Lines 7-13 in Algorithm 1
is to synthesize a sequence of statements by calling itself or
a single statement by calling the function synStmt. We ran-
domly decide the order of the statements in sequences. Such a
random strategy is also the suggested strategy in the existing
studies [4], [5]. The main logic of the function synStmt is
divided into two parts (Lines 14-22). First, it checks whether
the current depth is larger than the defined max_depth
(Lines 9-10). Second, if the check fails, a random statement is
synthesized aided by T (Lines 17-22), and the grammar cover-
age will be updated accordingly. It is worth noting that existing
synthesis strategies tend to generate less diverse code snippets
as they only synthesize a small fraction of limited statements
(e.g., Always False Conditional Block (FCB), Always True
Guard (TG), and Always True Conditional Block (TCB) [4]).
We then apply all the defined statement-level C grammar rules
to aid the synthesis of diverse code snippets. Note that CCG
does not support a few statements (i.e., switch, while, and
do-while); we evaluated this and noted that the improved bug-
finding capability of REMCCG is mainly from our proposed
components rather than the newly supported statements (more
discussion in Section V). Since the process of synthesizing
different statements is similar, for simplicity, we only show
the skeleton of synthesizing a for-loop statement in detail.

Algorithm 2 shows the synthesis skeleton of a for-loop
statement. Notably, instead of exactly following the semantics
of defined statements in C grammars, we manually construct
the structure of a statement based on the following two
guidelines: (1) we try to synthesize a larger code block to
be executed both as live or dead code (that can or cannot

6

Algorithm 2: Synthesizing a for-loop statement
Input: a context C, a synthesis depth depth, and a set of grammars T
Output: a for-loop code snippet

1 Function synForStmt(𝐶, 𝑑𝑒𝑝𝑡ℎ):
2 𝑐𝑚𝑝 ← {<, >, =, >=, <=}; // comparison operators
3 𝑜𝑝 ← {++, + =, −−, − =}; // increment/decrement op
4 𝑑𝑒𝑝𝑡ℎ + = 1;
5 var = randomVar (C); // select a variable from C
6 buildPredicate (var, cmp, op, randomNumber)
7 out « "{" // for-loop body starts
8 makeBlock (C, nesting)
9 𝐶𝑆 𝑓 𝑜𝑟 = synStmtSeq (C, depth, T)

10 out « "}" // for-loop body ends

be covered when executing the code, respectively), as both
live/dead code synthesis [4]–[6] have proven to be effective for
discovering deep bugs in compilers, and (2) we try to reuse as
much information in the collected context as possible (such as
variables in for conditions) to increase the diversity of code
snippets. As such, the synthesis of a for-loop statement in
Algorithm 2 includes two major parts, i.e., predicate building
(Line 6) and body building (Lines 8-9).

For the predicate building, we separately synthesize the true
and false predicates. According to the true/false of the built
predicate, we can synthesize a statement as a live code or
a dead code. To make the for-loop statement executable as a
live code, we first initialize two kinds of operators in advance,
i.e., the comparison operator and the increment/decrement
operator. Then, we randomly select a variable from the existing
context C via the function randomVar. Next, we synthesize
a live predicate for for-loop condition. Specifically, we build a
predictive to be true following two guidelines: (1) choose an
appropriate randomNumber and 𝑐𝑚𝑝 that evaluate “var cmp
randomNumber” to be true, and (2) choose an appropriate 𝑜𝑝;
for example, if we select the compare operator “<” or “<=”,
the corresponding operator selected later should be “++” or
“+=”. For synthesizing a false predicate, we directly produce
a false condition (e.g. 0) as the predicate. For the possibility
of synthesizing a true or false predicate, we set the same
possibility (50% from each) for them. When synthesizing
the body (Lines 7-10), we first call a built-in function (i.e.,
makeBlock) in the input program generator to build a block
and then invoke the synStmtSeq function to synthesize
statements sequences in the body. Here, we use the default
parameter nesting in the input program generator to control
the program size and the number of recursions.

In summary, the above synthesis process could yield a vase
number (controlled by the parameter N in Algorithm 1) of
diverse code snippets, and any of them can be a candidate to be
integrated into the test programs. To improve the effectiveness
of bug-revealing test program generation, we need to consider
a feasible way to select the bug-revealing code snippet to
construct new test programs.

2) Bug-revealing code snippets selection: We now de-
scribe our solution for selecting bug-revealing code snippets by
leveraging the introduced grammar coverage in Section III-B1.

Given a vast number of code snippet candidates along
with their unique grammar coverage for each candidate, we

calculate the sum of the square of the grammar coverage
of each candidate, where a larger value represents higher
diversity in a code snippet. This choice is justified by the fact
that measuring the Euclidean distance between the grammar
coverage of a candidate and coordinate origin was shown to be
effective in differentiating test programs [23]. Then, we apply
the above calculation results in ordering various code snippets.

We opt for the diverse code snippet with the largest value
as the bug-revealing one. When the code snippet is selected,
we integrate it into suitable positions in a test program.
Conceptually, the code snippet can be integrated into any
possible positions after local context initialization in 3 in
Fig. 4. In our study, we consider the positions where a
statement has been built in a function body, i.e., integrating
it into the position where after the last statement is built (4)
inside the function building. This choice is motivated by the
fact that there is a clearer boundary between newly synthesized
code snippets by our proposed components and existing code
snippets by the existing program generator, which makes it
easier for investigating the effectiveness of REMCCG.

C. Testing process

As shown in Fig. 4, a new generator REMCCG is produced
after remanufacturing the given program generator CCG, and
we expect it to generate bug-revealing test programs again.
Thus, we conduct a testing process to assess the effec-
tiveness of the remanufactured program generator in terms
of bug-finding capability. Specifically, a generation-based or
mutation-based approach can be applied to test compilers. We
present this process in the following section.

IV. EVALUATION

In this section, we conduct extensive experiments to eval-
uate the effectiveness of REMGEN. In particular, we seek to
investigate the following two research questions (RQs):
• RQ1: Can REMCCG boost both generation-based and

mutation-based approaches for compiler testing?
• RQ2: Can REMCCG find new compiler bugs in practice?
RQ1 uses old versions of compilers to assess the effective-

ness of REMCCG in boosting the state-of-the-art generator-
based and mutation-based approaches in terms of bug-finding
capability. RQ2 uses the development versions of compilers
in practice to assess the bug-finding capability of REMCCG.
Besides, we have also evaluated the effectiveness of the two
proposed components, but only present abbreviated results in
Section V due to the page limit.

A. Implementation and evaluation setup

1) Implementation: We take the tamed program generator
CCG [3] as a case study. We remanufacture CCG and imple-
ment REMCCG in our study. The main reason is that CCG is
old enough and has not been updated for a long time (which
is no longer maintained after 2016 when we used it). This fact
would be a shred of convincing evidence to demonstrate the
effectiveness of our approach if we can find new compiler bugs
through such an old tamed program generator. That means,

7

TABLE I: Results of Boosting in Generation-based Approach

Subject Tools Average Statistics

Cra. Perf. Sum. Imp.

GCC CCG [3] 2.9 0.3 3.2 16%

REMCCG 3.1 0.6 3.7 -

LLVM CCG [3] 9.2 2.7 11.9 11%

REMCCG 9.7 3.5 13.2 -

the remanufactured REMCCG should have a good bug-finding
capability in practice and be able to boost both the state-of-
the-art generation-based and mutation-based approaches. Due
to the limited functionality of CCG (as explained in Section
V), we aim to detect crash or performance bugs in compilers
in this study. To implement the synthesis strategy, we combine
a subset of C grammars in Grammar-v4 [24], which is a
rich collection including various ANTLR v4 [25] grammars,
with CCG [3]. We take ProtoBuffer [26], a practical format
that can be easily manipulated during transformation, as an
intermediate representation to smoothly convert C grammars
into real C programs. Besides, the bound of synthesized code
snippets in the synthesis phase is user-configurable and we set
the bound to 10 (see more discussion in Section V).

2) Evaluation setup: Our experiments run on a Ubuntu
18.04 server with Intel(R) Core(TM) i7-6900K CPU @
3.20GHz × 16 processors and 64GB RAM. For testing subjects
and running options, we choose two popular compilers (i.e.,
GCC and LLVM) on their five standard options, “-O0”, “-O1”,
“-Os”, “-O2”, and “-O3”, which follows the existing compiler
testing studies [2], [4]–[7].

Comparison approaches for RQ1. To demonstrate the
effectiveness of REMCCG in boosting generation-based ap-
proaches for compiler testing, we compare REMCCG with
CCG [3]. To evaluate the effectiveness of REMCCG in boost-
ing mutation-based approaches for compiler testing, we opt for
Hermes [4] as our target since it has proven to be the state-
of-the-art approach that outperforms other existing approaches
(i.e., Orion [6] and Athena [5]).

Duplicate bug identification. In our evaluation, every bug
detected by each tool is counted as a unique bug. Therefore, we
need to filter duplicate bugs. For crash bugs, we compare the
stack trace or the assertion information emitted by compilers.
However, it is not easy to filter performance bugs, because
there is no other information that can be referred to rather
than analyzing compiler source code deeply, which is not a
practical solution. To this end, we adopt a different strategy to
filter them. We follow the previous study [27] (i.e., comparing
the first buggy commit) to identify unique bugs for RQ1. For
RQ2, we detect brand new compiler bugs on the development
version of compilers. We directly file new bug reports to
developers and seek their help to identify them.

B. Answer to RQ1

To answer RQ1, we run REMCCG against state-of-the-art
generation-based approach (i.e., CCG [3]) and mutation-based
approach (i.e., Hermes [4]) over two old versions of main-
stream compilers (i.e., GCC-4.4.3 and LLVM-2.6) following

TABLE II: Results of Boosting in Mutation-based Approach

Subject Tools Average Statistics

Cra. Perf. Sum. Imp.

GCC Hermes(CCG) 3.0 0.5 3.5 14%
Hermes(REMCCG) 3.2 0.8 4.0 -

LLVM Hermes(CCG) 9.8 3.6 13.4 11%
Hermes(REMCCG) 10.6 4.3 14.9 -

the existing work [10], [11]. To conduct a fair comparison, we
run each approach under the same testing period of 90 hours
and 10 times (the same setting as [9], [27]) and then count
the average of the total number of detected bugs.

The comparison with the generation-based approach is
shown in Table I. The first column represents four tools under
comparison. The next four columns are the average statistic
of bugs detected by each approach. We count the number of
crash bugs (Cra.), the performance bugs (Perf.), the sum of
detected bugs (Sum.), and the improvement of detected bugs
(Imp.). Here, Imp. is the relative improvement of REMCCG
over the comparative approach. As shown in Table I, we can
observe that REMCCG finds 16% and 11% more bugs than
CCG under the testing subject of GCC and LLVM.

To evaluate the effectiveness of REMCCG in boosting the
state-of-the-art mutation-based approach (i.e., Hermes [4]),
we use the baseline CCG and remanufactured REMCCG as
a program generator to generate seed programs. Following
the mutation strategy in Hermes, we conduct mutations (i.e.,
inserting FCB, TG, and TCB) upon seed programs to construct
test programs for compiler testing. Table II shows the results
of the two approaches. It clearly shows that Hermes with
REMCCG can detect 14% and 11% more bugs than Hermes
with CCG in GCC and LLVM, respectively. For all the results
in Table I and Table II, we conducted the Mann-Whitney
U-test [28] with a level of significance of 0.05 on the total
bugs between REMCCG and the comparative approaches.
The calculated p-value is less than 0.05, which indicates our
experiments are statistically significant. Note that the number
of detected bugs in LLVM is larger than in GCC (e.g., 3.7
vs 13.2 in Table I). This may be because of the age of the
two compilers. Although two compilers were released very
close in 2010, GCC has a longer history than LLVM (the first
version of GCC was released in 1987 while LLVM was in
2003). Therefore, it is reasonable that LLVM is more fragile.
It is also worth noting that the capability hidden in REMCCG
is to find new bugs, which is demonstrated later in RQ2.

C. Answer to RQ2

To evaluate the practical bug-finding capability of REM-
GEN, we test the daily updated development trunk version of
GCC and LLVM in the non-continuous period from middle
February to late September in 2021. We follow the existing
studies to detect bugs over trunk versions as compiler develop-
ers always fix bugs in the development version more promptly
than the released versions [4]–[6], [9]. We evaluate REMCCG
from three aspects, i.e., the number of detected bugs, the type
of fixed bugs, and the importance of those bugs.

8

TABLE III: Results of All the Reported Bugs

Bug Status GCC LLVM Total

Fixed 8 29 37
WorksForMe 0 2 2

Duplicate 2 3 5
Pending 0 12 15

Total 10 46 56

TABLE IV: Results of Bug Types of Fixed Bugs

But Types GCC LLVM Total

Crash 6 16 22
Performance 2 13 15

Total 8 29 37

Detected bugs. As shown in Table III, we reported 56 new
bugs for two compilers, of which 61% of the bugs (i.e., 37)
have been fixed already. Notably, the number of bugs reported
to LLVM (29 fixed among a total of 46) is larger than GCC’s (8
fixed among a total of 10). The reason could be that the unique
and complex features of optimization components in LLVM
can cause more bugs. For example, the different sequences of
optimal options in LLVM may also lead to severe bugs [9].
Since it takes some time for developers to confirm reported
bugs, the trunk version can update very frequently during
that time. Therefore, some changes may suppress the reported
bugs. Those bugs are marked as “WorksForMe”. We have
two such kinds of bugs. GCC does not have such a status
as developers of GCC have a quick response to the newly
filed bugs. Besides, because developers normally spent more
than one year on average to fix bugs [29], [30], there are
still 12 bugs pending the response of developers. In addition,
we have 5 duplicate bugs, of which 3 bugs are performance
bugs. Two tricky GCC crash bugs (e.g., bug#100578) were
also marked as “duplicate” because they emit the different
assertion information as the existed bug report (bug#100512).
We misunderstand this bug thus causing the duplicate report.
Table V further lists all the 37 fixed bugs, including the subject
compiler and its bug ID (Compiler-ID), priority, type, affected
optimizations (Affected. Opt.), and affected versions.

Bug types. We classify bugs by the following criteria.
If a compiler crashes during compilation (e.g., abnormally
terminates with an internal compiler error in GCC or an
assertion failure in LLVM), a crash bug is detected. If a
compiler spends a quite long time (i.e., 30 seconds, following
a prior study [2]), to compile a test program, a performance
bug is detected. Based on the above taxonomy, we classify our
37 fixed bugs into two main categories as shown in Table IV.

Bug importance. Developers treat our reported bugs se-
riously, and they have fixed most (66%) of them so far.
Specifically, GCC developers are generally more responsive
and fix all of our reported bugs except for a duplicate one.
The explicit way to measure the importance of our bug is via
the “Importance” field set by developers in bug reports. From
Table V, developers marked 5 out of 8 GCC bugs as “P1” or
“P2”, i.e., the two highest priorities (the default is “P3”). For

TABLE V: Details of Fixed Bugs

Compiler-ID Priority Type Affected. Opt. Affected Versions

1 GCC-99694 P2 Perf. -O1,2,3 9.3-11.0 (trunk)
2 GCC-99880 P2 Crash -O3 10.2-11.0 (trunk)
3 GCC-99947 P1 Crash -O3 11.0 (trunk)
4 GCC-100349 P2 Crash -O2,3,s 11.0-12.0 (trunk)
5 GCC-100512 P3 Crash -O2,3,s 12.0 (trunk)
6 GCC-100626 P2 Crash -O1,2,3,s 11.0-12.0 (trunk)
7 GCC-102057 P3 Crash -O1,2,3,s 12.0 (trunk)
8 GCC-102356 P3 Perf. -O3 11.0-12.0 (trunk)
9 LLVM-49171 P3 Perf. -O3 13.0 (trunk)
10 LLVM-49205 P3 Perf. -O1,2,3,s 11.0-13.0 (trunk)
11 LLVM-49218 P3 Crash -O1 12.0-13.0 (trunk)
12 LLVM-49396 P3 Crash -O2,3,s 12.0-13.0 (trunk)
13 LLVM-49451 P3 Crash -Os 13.0 (trunk)
14 LLVM-49466 P3 Crash -O2 13.0 (trunk)
15 LLVM-49475 P3 Perf. -O1 12.0-13.0 (trunk)
16 LLVM-49541 P3 Perf. -O2,s 7.0-13.0 (trunk)
17 LLVM-49697 P3 Crash -O3 7.0-13.0 (trunk)
18 LLVM-49785 P3 Perf. -O3 13.0 (trunk)
19 LLVM-49786 P3 Perf. -O2 13.0 (trunk)
20 LLVM-49993 P3 Crash -O3 13.0 (trunk)
21 LLVM-50009 P3 Crash -Os 12.0-13.0 (trunk)
22 LLVM-50050 P3 Crash -O2,3,s 13.0 (trunk)
23 LLVM-50191 P3 Crash -O2 13.0 (trunk)
24 LLVM-50238 P3 Crash -O1,2,3,s 13.0 (trunk)
25 LLVM-50254 P3 Perf. -O2,3 13.0 (trunk)
26 LLVM-50279 P3 Perf. -O3 13.0 (trunk)
27 LLVM-50302 P3 Perf. -O3 13.0 (trunk)
28 LLVM-50307 P3 Crash -Os 13.0 (trunk)
29 LLVM-50308 P3 Perf. -O1,2,3,s 12.0-13.0 (trunk)
30 LLVM-51553 P3 Crash -O3 14.0 (trunk)
31 LLVM-51584 P3 Perf. -O1,2,3,s 14.0 (trunk)
32 LLVM-51612 P3 Crash -O2,3 14.0 (trunk)
33 LLVM-51656 P3 Crash -O2,3 14.0 (trunk)
34 LLVM-51657 P3 Perf. -O2,3,s 12.0-14.0 (trunk)
35 LLVM-51762 P3 Perf. -O1 14.0 (trunk)
36 LLVM-52018 P3 Crash -O3 14.0 (trunk)
37 LLVM-52024 P3 Crash -O2 14.0 (trunk)

LLVM, developers marked all our bugs as the default value
“P normal” as they usually do not classify the bug priority.
Even so, a plurality of bugs is backporting on the released
version (e.g., bug#49205, bug#49218, bug#49475, bug#49541
to 12.0.0, and bug#50308 to 12.0.1), which demonstrates the
importance of those bugs as developers usually backport the
most severe bugs to the released versions.

Affected optimization levels. Our reported bugs exist in
the deep code regions of compilers. Based on previous studies
[29], [30], optimization bugs are tricky to be discovered. Our
aim in this study follows the existing work, and all of our bugs
are related to the optimization phase. Specifically, among the
fixed bugs, 26 are caused by the option of “-O3” (which turns
on almost all the optimization options by default), and 6 bugs
occurred in all “-O1” to “-Os” options. The above result further
bears out REMCCG is able to reveal deep bugs in compilers.

Affected compiler versions. Our approach can find many
long-latent bugs. Although our focus is to test the development
versions of GCC and LLVM, we have found 10 bugs in the
relatively old versions of the two compilers (shown in Table
V). It is also worth noting that two bugs have existed for many
years. One is for GCC (bug#99694) and another is for LLVM
(bug#49541), for which exist more than 1 year and 3 years,
respectively. Note that the trunk version of GCC and LLVM
was changed during our testing period [31], [32].

V. DISCUSSION

Effectiveness of the two proposed components. To evalu-
ate the effectiveness of two proposed components, we compare
REMGEN with its variants, including REMCCG(¬G) (with

9

https://gcc.gnu.org/bugzilla/show_bug.cgi?id=100578
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=100512
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=99694
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=99880
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=99947
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=100349
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=100512
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=100626
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=102057
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=102057
https://bugs.llvm.org/show_bug.cgi?id=49171
https://bugs.llvm.org/show_bug.cgi?id=49205
https://bugs.llvm.org/show_bug.cgi?id=49218
https://github.com/llvm/llvm-project/issues/48740
https://bugs.llvm.org/show_bug.cgi?id=49451
https://bugs.llvm.org/show_bug.cgi?id=49466
https://bugs.llvm.org/show_bug.cgi?id=49475
https://bugs.llvm.org/show_bug.cgi?id=49541
https://github.com/llvm/llvm-project/issues/49041
https://bugs.llvm.org/show_bug.cgi?id=49785
https://bugs.llvm.org/show_bug.cgi?id=49786
https://bugs.llvm.org/show_bug.cgi?id=49993
https://bugs.llvm.org/show_bug.cgi?id=50009
https://bugs.llvm.org/show_bug.cgi?id=50050
https://bugs.llvm.org/show_bug.cgi?id=50191
https://github.com/llvm/llvm-project/issues/49582
https://bugs.llvm.org/show_bug.cgi?id=50254
https://bugs.llvm.org/show_bug.cgi?id=50279
https://bugs.llvm.org/show_bug.cgi?id=50302
https://github.com/llvm/llvm-project/issues/49651
https://bugs.llvm.org/show_bug.cgi?id=50308
https://bugs.llvm.org/show_bug.cgi?id=51553
https://bugs.llvm.org/show_bug.cgi?id=51584
https://bugs.llvm.org/show_bug.cgi?id=51612
https://bugs.llvm.org/show_bug.cgi?id=51656
https://bugs.llvm.org/show_bug.cgi?id=51657
https://bugs.llvm.org/show_bug.cgi?id=51762
https://bugs.llvm.org/show_bug.cgi?id=52018
https://github.com/llvm/llvm-project/issues/51366
https://bugs.llvm.org/show_bug.cgi?id=49205
https://bugs.llvm.org/show_bug.cgi?id=49218
https://bugs.llvm.org/show_bug.cgi?id=49475
https://bugs.llvm.org/show_bug.cgi?id=49541
https://bugs.llvm.org/show_bug.cgi?id=50308
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=99694
https://bugs.llvm.org/show_bug.cgi?id=49541

random synthesis using the built-in functions in program
generators rather than the grammar-aided synthesis), REM-
CCG(¬S) (without the selection strategy), and REMCCG(S𝑅)
(with random selection rather than grammar coverage guided
selection). Specifically, we take CCG as the baseline and
run those variants for 24 hours in GCC-4.4.3. We repeat the
experiments 5 times and count the average number of detected
bugs. The results show that REMCCG can find 2.6 bugs,
while REMCCG(¬G), REMCCG(¬S), and REMCCG(S𝑅)
can only find 2.4, 2.0, and 2.2 bugs, achieving 8%, 30%,
and 18% improvement, respectively. To further understand the
impact of newly introduced language features (e.g., while-
loop) in REMCCG, we check the bug-revealing test program
reported in RQ2. The results show only 5 out of 56 contain
new language features that do not exist in the original CCG,
which indicates that 91% of bug-revealing test programs are
generated by our effective remanufacturing process.

Bound selection. We have set the bound (i.e., N) to 10
in Algorithm 1. However, it is unclear which bound could
be a better choice. We thus set different bounds (i.e., 3,
5, 10, 20, 40, 60, 80, and 100) to evaluate its bug-finding
capability. We run various bounds in GCC-4.4.3 for 24 hours,
repeating 5 times. The results show that the value 10 is the
preferred setting. This is reasonable as a small bound restricts
the diversity of the generated test program. Although a diverse
test program can be synthesized by a large bound, it also
increases the time cost of code snippet selection and program
compilation. For a better trade-off between selection and bug-
finding, we opted for a moderate value (i.e., 10) in REMCCG.

Comparison with Csmith [2] and YARPGen [8]. We
also conducted extra experiments to compare REMGEN with
another two well-known generation-based approaches (i.e.,
Csmith [2] and YARPGen [8]) under the same setting used
in RQ1. The results show REMCCG remarkably outperforms
Csmith and YARPGen, i.e., REMGEN can find 164%/363%
and 120%/595% more bugs than Csmith and YARPGen,
in GCC/LLVM, respectively. The results are reasonable as
they have different designs and implementations. Csmith and
YARPGen are designed to mainly detect miscompliation bugs,
another important category of bugs in compilers that require
the test program free of undefined behaviors. Since REMCCG
can generate complementary test programs (i.e., diverse syn-
tactic valid but may contain undefined behaviors) that Csmith
is hard to generate, it is rational that the bug-finding capability
of REMCCG is orders of magnitude better than Csmith and
YARPGen. It is worth noting that test programs generated by
REMCCG are important to disclose critical bugs, which is also
confirmed by developers with their positive feedback5.

Limitation of REMCCG. REMCCG inherits the limitation
from CCG [3]. That is, REMCCG can only find two kinds of
bug (i.e., crash and performance bugs) in compilers. However,
our proposed framework could apply to other program gener-
ators, such as Csmith [2] and YARPGen [8]. Specifically, to
remanufacture program generators that have a high demand

5https://gcc.gnu.org/bugzilla/show_bug.cgi?id=99694#c15

for test programs, e.g., those test programs should be free
of undefined or unspecified behaviors, a checking module
should be considered in the synthesized code snippets (i.e.,
before 4 in Fig. 4). Such a checking module is used for
guaranteeing the validity (i.e., free of undefined behavior) of
the synthesized code snippet. If a synthesized code snippet
fails in the checking, the snippet should be rejected and re-
synthesized again. Note that the design of such checking is
non-trivial. For example, Csmith adopts complex heuristic
algorithms to make sure the test programs are free of undefined
behaviors, and such a process is proven to be heavy [8].
Therefore, a more practical solution (e.g., practical static
analysis) which makes the checking process more efficient,
should be taken into account during remanufacturing. We leave
this extension as our near future work.

VI. THREATS TO VALIDITY

Internal threats. The major internal threat comes from the
old program generator chosen in this study. REMCCG can
only detect two types of bugs (i.e., crash or performance
bugs) in this study, as we opt for CCG rather than other
existing program generators. However, based on the evaluation
results in Section IV, REMCCG is not only able to boost two
prominent test program construction approaches but also has a
promising practical bug-finding capability. We leave the work
of remanufacturing other program generators for future work.
Another threat lies in the implementation of REMCCG. The
choice of the bound value could affect the effectiveness of
REMCCG. In this study, we set the bound value by evaluating
the influence of different values of bounds as we discussed
in Section V. We do not expect this to be a serious threat
because we have conducted intensive experiments to evaluate
the effectiveness of different bound values. We spend a long
time evaluating the effectiveness of REMCCG. For example,
only considering evaluating the bug-finding capability of each
approach in RQ1, the entire experiment lasted for more than
30 days (running each approach for 90 hours and 10 times).
We believe the long testing period can alleviate such a threat.

External threat. The external threat mainly lies in the
testing subjects. We used two versions of two compilers as
subjects, and these subjects may not be representative enough
for different compilers (e.g., icc or msvc is not tested). To re-
duce this threat, we selected the two most popular and widely
studied C compilers following the existing studies [2], [4], [5],
[7], [8], [10], [33]. More specifically, we considered different
compilers with both old (in RQ1 and extra experiments in
Section V) and development (in RQ2) versions, to evaluate
the effectiveness of REMCCG from various testing subjects.

VII. RELATED WORK

In this section, we survey related works on constructing test
programs and test program selection for compiler testing.

Test program generation for compiler testing. There
is a plethora of work on constructing diverse test programs
via generator-based and mutation-based approaches. Quest
[34] generates various interesting function call signatures to

10

https://gcc.gnu.org/bugzilla/show_bug.cgi?id=99694#c15

test calling conventions. Eide and Regehr [35] design a tool
for producing abundant volatile-qualified variables to exercise
compilers. CCG [3] is designed for generating diverse syntacti-
cally valid test programs. Csmith [2] and YARPGen [8] excel
at generating free of undefined behavior programs to detect
miscompilation bugs. The Orange family [36]–[38] targets
generating diverse test programs to validate arithmetic opti-
mization in compilers. Ldrgen tool sets [39], [40] are designed
for searching missed optimization via generating liveness
code. Machine learning-based approaches (e.g., DeepFuzz [41]
and DeepSmith [42]) are also applied to randomly generate
test programs. Another direction is to obtain diverse test
programs by modifying existing programs. Orion [6], Athena
[5], and Hermes [4] are three state-of-the-art approaches that
target mutating existing programs by deleting/inserting code
snippets on dead or live or both code regions. Followed by
Orion, CLsmith [43] is proposed to validate the OpenCL
compiler which uses a similar strategy to only mutate the dead
code area. Later, Donaldson and Lascu [44] target generating
diverse yet valid expressions to exercise graphic OpenGL
compilers. Recent coverage-guided fuzzing approach PolyGlot
[45] is proposed to mutate on intermediate representation
(LLVM bitcode) code rather than source code.

Different from the existing approaches, we focus on re-
manufacturing program generators. That means, our proposed
approach could boost both the generation-based and the
mutation-based approaches for compiler testing. Specifically,
in the former, compared to generation-based approaches,
we increase the diversity of test programs by leveraging a
grammar-aided diverse code snippets synthesis during program
generation. In the latter, REMGEN is able to make a tamed
program generator (i.e., CCG) generate new code snippets
at a low cost compared with mutation-based approaches.
Moreover, the generated code snippets can be further used
by mutation-based approaches to detect more compiler bugs.
To sum up, our approach could be complementary to existing
test program generation approaches.

Test program selection for compiler testing. Our code
snippet selection is related to the studies on test program
selection as a test program consists of various code snippets.
Chen et al. [23] propose a text-vector-based approach to
prioritize test programs. Further, Chen et al. [11] learn and
build a model to produce bug-revealing programs with certain
features. Since different programs may have the same test
capabilities (e.g., exercise the same region in the compiler),
Chen et al [46], [47] learn to predict coverage statically based
on test program features without executing.

Unlike the existing work, we focus on the bug-revealing
code snippet selection for effectively remanufacturing a tamed
program generator. Specifically, the novelty of our selection
strategy is two-fold. First, we adopt grammar coverage, rather
than existing text-vector-based or coverage-based metrics, to
characterize different code snippets; it is effective for dis-
tinguishing various code snippets after synthesizing at a low
cost. Furthermore, we leverage the introduced coverage metric
to select the bug-revealing code snippets to construct new

test programs. Augmented by the grammar coverage guided
selection, the remanufactured program generator has shown to
be effective for compiler testing during our evaluation.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we present a framework named REMGEN
to remanufacture a program generator for compiler testing.
Two main challenges have been addressed, i.e., the synthesis
of diverse code snippets at a low cost and the bug-revealing
code snippet selection for constructing new test programs. To
demonstrate the effectiveness of REMGEN, we performed a
case study on an old C program generator CCG and imple-
mented REMCCG. Evaluation results show that REMCCG
not only boosts both the generation-based and the mutation-
based approaches in terms of bug-finding capability but also
has a promising bug-finding capability in practice. Notably,
REMCCG has found 56 new bugs for GCC and LLVM, of
which 37 have already been fixed by developers.

For future work, we are actively pursuing to apply the pro-
posed framework to remanufacture other program generators
(e.g., Csmith) for detecting more types of compiler bugs.

ACKNOWLEDGMENT

The authors would like to appreciate all developers who
participated in this work, especially for GCC and LLVM
developers who promptly confirmed and fixed our reported
bugs, and the anonymous reviewers for their insightful com-
ments. This work is supported in part by the National Natu-
ral Science Foundation of China under grant no. 61902181,
62032004, and CCF-SANGFOR OF 2022003. This article is
also partially supported by the National Research Foundation
(NRF) Singapore and National Satellite of Excellence in
Trustworthy Software Systems (NSoE-TSS) award number
NSOE-TSS2019-04.

REFERENCES

[1] S. Bauer, P. Cuoq, and J. Regehr, “Deniable backdoors using compiler
bugs,” International Journal of PoC or GTFO, 0x08, pp. 7–9, 2015.

[2] X. Yang, Y. Chen, E. Eide, and J. Regehr, “Finding and understanding
bugs in C compilers,” in Proceedings of the 32nd ACM SIGPLAN
Conference on Programming Language Design and Implementation,
2011, pp. 283–294.

[3] A. Balestrat. (2006) A random c code generator. [Online]. Available:
https://github.com/Mrktn/ccg

[4] C. Sun, V. Le, and Z. Su, “Finding compiler bugs via live code mutation,”
in Proceedings of the 2016 ACM SIGPLAN International Conference on
Object-Oriented Programming, Systems, Languages, and Applications,
2016, pp. 849–863.

[5] V. Le, C. Sun, and Z. Su, “Finding deep compiler bugs via guided
stochastic program mutation,” in Proceedings of the 2015 ACM SIG-
PLAN International Conference on Object-Oriented Programming, Sys-
tems, Languages, and Applications, 2015, pp. 386–399.

[6] V. Le, M. Afshari, and Z. Su, “Compiler validation via equivalence
modulo inputs,” in Proceedings of the 35th ACM SIGPLAN Conference
on Programming Language Design and Implementation, 2014, pp. 216–
226.

[7] Q. Zhang, C. Sun, and Z. Su, “Skeletal program enumeration for rigorous
compiler testing,” in Proceedings of the 38th ACM SIGPLAN Conference
on Programming Language Design and Implementation, 2017, pp. 347–
361.

[8] V. Livinskii, D. Babokin, and J. Regehr, “Random testing for C and
C++ compilers with YARPGen,” Proc. ACM Program. Lang., vol. 4,
no. OOPSLA, pp. 1–25, 2020.

11

https://github.com/Mrktn/ccg

[9] H. Jiang, Z. Zhou, Z. Ren, J. Zhang, and X. Li, “CTOS: Compiler
Testing for Optimization Sequences of LLVM,” IEEE Transactions on
Software Engineering, vol. 48, no. 7, pp. 2339–2358, 2022.

[10] J. Chen, G. Wang, D. Hao, Y. Xiong, H. Zhang, and L. Zhang, “History-
guided configuration diversification for compiler test-program genera-
tion,” in Proceedings of the 34th IEEE/ACM International Conference
on Automated Software Engineering, 2019, pp. 305–316.

[11] J. Chen, Y. Bai, D. Hao, Y. Xiong, H. Zhang, and B. Xie, “Learning to
prioritize test programs for compiler testing,” in 2017 IEEE/ACM 39th
International Conference on Software Engineering, 2017, pp. 700–711.

[12] Y. Tang, H. Jiang, Z. Zhou, X. Li, Z. Ren, and W. Kong, “Detecting
compiler warning defects via diversity-guided program mutation,” IEEE
Transactions on Software Engineering, no. 01, pp. 1–1, 2021.

[13] H. Tu, H. Jiang, Z. Zhou, Y. Tang, Z. Ren, L. Qiao, and L. Jiang,
“Detecting C++ compiler front-end bugs via grammar mutation and
differential testing,” IEEE Transactions on Reliability, pp. 1–15, 2022.

[14] Y. Zhao, Z. Wang, J. Chen, M. Liu, M. Wu, Y. Zhang, and L. Zhang,
“History-driven test program synthesis for JVM testing,” in Proceedings
of the 44th International Conference on Software Engineering, 2022, pp.
1133–1144.

[15] J. Chen, J. Patra, M. Pradel, Y. Xiong, H. Zhang, D. Hao, and L. Zhang,
“A survey of compiler testing,” ACM Comput. Surv., vol. 53, no. 1, pp.
1–36, 2020.

[16] Y. Chen, A. Groce, C. Zhang, W.-K. Wong, X. Fern, E. Eide, and
J. Regehr, “Taming compiler fuzzers,” in Proceedings of the 34th
ACM SIGPLAN Conference on Programming Language Design and
Implementation, 2013, pp. 197–208.

[17] V. Le, C. Sun, and Z. Su, “Randomized stress-testing of link-time
optimizers,” in Proceedings of the 2015 International Symposium on
Software Testing and Analysis, 2015, pp. 327–337.

[18] M. Matsumoto and W. Ijomah, Remanufacturing, 2013, pp. 389–408.
[19] M. Matsumoto, S. Yang, K. Martinsen, and Y. Kainuma, “Trends

and research challenges in remanufacturing,” International Journal of
Precision Engineering and Manufacturing-Green Technology, vol. 3, pp.
129–142, 2016.

[20] R. Steinhilper, “Remanufacturing-the ultimate form of recycling,” Fraun-
hofer IRB Verlag, 1998.

[21] U. Commission, “Remanufactured goods: An overview of the U.S. and
global industries, markets, and trade,” pp. 1–206, 2013.

[22] Loop unrolling. [Online]. Available: https://en.wikipedia.org/wiki/Loop_
unrolling

[23] J. Chen, Y. Bai, D. Hao, Y. Xiong, H. Zhang, L. Zhang, and B. Xie,
“Test case prioritization for compilers: A text-vector based approach,”
in 2016 IEEE International Conference on Software Testing, Verification
and Validation (ICST), 2016, pp. 266–277.

[24] Grammars written for antlr v4. [Online]. Available: https://github.com/
antlr/grammars-v4

[25] T. Parr, The Definitive ANTLR 4 Reference, 2nd ed., 2013.
[26] Protocol buffers: Google’s data interchange format. [Online]. Available:

https://github.com/protocolbuffers/protobuf
[27] J. Chen, W. Hu, D. Hao, Y. Xiong, H. Zhang, L. Zhang, and B. Xie, “An

empirical comparison of compiler testing techniques,” in Proceedings of
the 38th International Conference on Software Engineering, 2016, pp.
180–190.

[28] A. Arcuri and L. Briand, “A practical guide for using statistical tests to
assess randomized algorithms in software engineering,” in Proceedings
of the 33rd International Conference on Software Engineering, 2011,
pp. 1–10.

[33] C. Sun, V. Le, and Z. Su, “Finding and analyzing compiler warning de-
fects,” in Proceedings of the 38th International Conference on Software
Engineering, 2016, pp. 203–213.

[29] C. Sun, V. Le, Q. Zhang, and Z. Su, “Toward understanding compiler
bugs in GCC and LLVM,” in Proceedings of the 25th International
Symposium on Software Testing and Analysis, 2016, pp. 294–305.

[30] Z. Zhou, Z. Ren, G. Gao, and H. Jiang, “An empirical study of
optimization bugs in GCC and LLVM,” Journal of Systems and Software
(JSS), vol. 174, p. 110884, 2021.

[31] GCC trunk version was changed from 11.0 to 12.0 on April 20,
2021. [Online]. Available: https://github.com/gcc-mirror/gcc/commit/
0cc79337ad265aabccab63882a810f9dc509a9d0

[32] LLVM trunk version was changed from 13.0 to 14.0 on July 28,
2021. [Online]. Available: https://github.com/llvm/llvm-project/commit/
08c766a7318ab37bf1d77e0c683cd3b00e700877

[34] C. Lindig, “Random testing of C calling conventions,” in Proceedings
of the Sixth International Symposium on Automated Analysis-Driven
Debugging, 2005, pp. 3–12.

[35] E. Eide and J. Regehr, “Volatiles are miscompiled, and what to do
about it,” in Proceedings of the 8th ACM International Conference on
Embedded Software, 2008, pp. 255–264.

[36] E. Nagai, H. Awazu, N. Ishiura, and N. Takeda, “Random Testing
of C Compilers Targeting Arithmetic Optimization,” in Workshop on
Synthesis And System Integration of Mixed Information Technologies
(SASIMI 2012), 2012, pp. 48–53.

[37] E. Nagai, A. Hashimoto, and N. Ishiura, “Scaling up Size and Number
of Expressions in Random Testing of Arithmetic Optimization of C
Compilers,” in Workshop on Synthesis And System Integration of Mixed
Information Technologies (SASIMI 2013)., 2013, pp. 88–93.

[38] E. Nagai, H. Awazu, N. Ishiura, and N. Takeda, “Reinforcing random
testing of arithmetic optimization of C compilers by scaling up size
and number of expressions,” IPSJ Transactions on System LSI Design
Methodology, vol. 7, pp. 91–100, 2014.

[39] G. Barany, “Finding missed compiler optimizations by differential test-
ing,” in Proceedings of the 27th International Conference on Compiler
Construction, 2018, pp. 82–92.

[40] Barany, “Liveness-driven random program generation,” in Logic-Based
Program Synthesis and Transformation, 2018, pp. 112–127.

[41] X. Liu, X. Li, R. Prajapati, and D. Wu, “Deepfuzz: Automatic generation
of syntax valid c programs for fuzz testing,” in Proceedings of the AAAI
Conference on Artificial Intelligence, 2019, pp. 1044–1051.

[42] C. Cummins, P. Petoumenos, A. Murray, and H. Leather, “Compiler
fuzzing through deep learning,” in Proceedings of the 27th ACM
SIGSOFT International Symposium on Software Testing and Analysis,
2018, pp. 95–105.

[43] C. Lidbury, A. Lascu, N. Chong, and A. F. Donaldson, “Many-core com-
piler fuzzing,” in Proceedings of the 36th ACM SIGPLAN Conference on
Programming Language Design and Implementation, 2015, pp. 65–76.

[44] A. F. Donaldson and A. Lascu, “Metamorphic testing for (graphics)
compilers,” in Proceedings of the 1st International Workshop on Meta-
morphic Testing, 2016, pp. 44–47.

[45] Y. Chen, R. Zhong, H. Hu, H. Zhang, Y. Yang, D. Wu, and W. Lee,
“One engine to fuzz’em all: Generic language processor testing with
semantic validation,” in Proceedings of the 42nd IEEE Symposium on
Security and Privacy (Oakland), 2021, pp. 642–658.

[46] J. Chen, “Learning to accelerate compiler testing,” in Proceedings of
the 40th International Conference on Software Engineering: Companion
Proceedings, 2018, pp. 472–475.

[47] J. Chen, G. Wang, D. Hao, Y. Xiong, H. Zhang, L. Zhang, and
B. Xie, “Coverage prediction for accelerating compiler testing,” IEEE
Transactions on Software Engineering, vol. 47, no. 2, pp. 261–278, 2021.

12

https://en.wikipedia.org/wiki/Loop_unrolling
https://en.wikipedia.org/wiki/Loop_unrolling
https://github.com/antlr/grammars-v4
https://github.com/antlr/grammars-v4
https://github.com/protocolbuffers/protobuf
https://github.com/gcc-mirror/gcc/commit/0cc79337ad265aabccab63882a810f9dc509a9d0
https://github.com/gcc-mirror/gcc/commit/0cc79337ad265aabccab63882a810f9dc509a9d0
https://github.com/llvm/llvm-project/commit/08c766a7318ab37bf1d77e0c683cd3b00e700877
https://github.com/llvm/llvm-project/commit/08c766a7318ab37bf1d77e0c683cd3b00e700877

	Introduction
	Background and Illustrative example
	Program Generators
	Remanufacturing
	The idea of RemGen and an illustrative example
	The idea of RemGen
	An illustrative example

	Approach
	Preparation process
	Remanufacturing process
	Diverse code snippets synthesis
	Bug-revealing code snippets selection

	Testing process

	Evaluation
	Implementation and evaluation setup
	Implementation
	Evaluation setup

	Answer to RQ1
	Answer to RQ2

	Discussion
	Threats to validity
	Related work
	Conclusion and Future work
	References

