
@AndreasZeller

ON IMPACT IN SOFTWARE ENGINEERING RESEARCH
ANDREAS ZELLER, CISPA HELMHOLTZ CENTER FOR IT SECURITY

DAGSTUHL WORKSHOP "SE FORSCHUNGSMETHODENTRAINING"
MARCH 2, 2020

@AndreasZeller

ANDREAS ZELLER: KEY FACTS

• PhD in 1997 on Configuration Management with Feature Logic

• Since 2001 in Saarbrücken, Germany (Saarland University + CISPA)

• Four 10-year impact awards 2009–2017 (for papers 1999–2007)

• ACM Fellow in 2010

• ERC Advanced Grant in 2011

• SIGSOFT Outstanding Research Award in 2018

@AndreasZeller

ANDREAS ZELLER: KEY FACTS

• Since 2019, Faculty at CISPA Helmholtz Center for Information Security

• Roughly equivalent to a Director at a Max Planck Institute

• Devoted to groundbreaking fundamental research in IT Security

• Seven funded PhD positions, minimal teaching obligations

• Awe-inspiring colleagues + students, great team work

– I am a minority

@AndreasZeller

WHAT IS IMPACT?

@AndreasZeller

WHAT IS IMPACT?

• How do your actions change the world?

• Often measured in citations, publications, funding, people, …

• All these are indicators of impact, but not goals in themselves

• We want to make the world a better place

• Gives meaning and purpose to our (professional) life

@AndreasZeller

WHAT MAKES IMPACTFUL RESEARCH?

• Intellectual challenge – was it hard, or could anyone have done this?

• Elegance – is your research specific to a context, or can it be reused
again and again?

• Usefulness – can someone make money with it?

• Innovation is the delta in any of these metrics

@AndreasZeller

IMPACT OUTSIDE OF SE

• Programming Languages folks miss the intellectual challenge

• Formal Methods folks miss elegance and challenge

• Industry folks miss usefulness and applicability

• Far too often, we recluse in our private bubbles

@AndreasZeller

MY PATH TO IMPACT

@AndreasZeller

MY PATH TO IMPACT

• Life can only be understood backwards; but it must be lived forwards
(Søren Kierkegaard)

@AndreasZeller

CONFIGURATION MANAGEMENT
WITH FEATURE LOGIC (1991–1997)

• Topic defined by my PhD advisor
Gregor Snelting

• Idea: Formally describe variants and
revisions with feature logic

• “A unified model for configuration
management”

3.3 Combining Delta Features and other Features 19

..........

bug fixed f functionbug fixed f function

bug fixed f function procedurebug fixed f function procedure

bug fixed f function bug fixed f procedure

Figure 8: Delta features and other features

. This is only natural, since the change relies on the presence of the
change. Adding a new revision under implies that the revision is now tagged with

, so that the generalization property is not violated. Indeed,
.

3.3 Combining Delta Features and other Features

Besides all the delta features, other features are still allowed (and encouraged). Until now, we left
them out for clarity. However, there is no difference between the handling of delta features and other
features, as is shown in the following example.

Example 3.3 Consider figure 8. Here, we have figure 6 revisited, but enhanced with more features.
We assume that the change named fixes a bug and introduces a new symbol f , which is a function.
This is the situation in the upper lattice. Now let us assume a change leaving the bug fixed,
but changing f to a procedure. The result is the same lattice as in figure 6, enhanced with the new
features; the reader may verify that the lattice properties are not broken.

We may now select versions

according to their respective features (e.g. f procedure , which selects the revision with
the change applied, or f function , which leaves us the choice of being applied or not),
or

@AndreasZeller

FEATURE LOGIC: LESSONS LEARNED

• (None) – did everything wrong

@AndreasZeller

FEATURE LOGIC: LESSONS LEARNED

• You can get plenty of papers accepted

• even if you miss the problem

• even if you neither prove nor evaluate

• “Modeling for the sake of modeling”

• Enabled much of my later work, though

@AndreasZeller

WHAT TO DO AFTER PHD

• During PhD, found standards and topics at
German IT companies disappointing

• Academia seemed good alternative

• Socialized by open source development

@AndreasZeller

DDD (1994–1999)

• During PhD, programmed a lot

• Debugging was hard!

• Built the DDD debugger GUI
with Dorothea Lütkehaus

• Welcome change from formal work

@AndreasZeller

DDD (1994–1999)

• DDD was among the first dev tools
with a “professional” GUI

• Downloaded by the tens of thousands

• Adopted as a GNU project:
Street credibility with developers

• Impact through usefulness

@AndreasZeller

DDD: LESSONS LEARNED

• Work on a real problem

• Assume as little as possible

• Keep things simple

– “real” as in “real world”, not “real papers”

– make things fit into real processes

– complexity impresses, but prevents impact

@AndreasZeller

DELTA DEBUGGING (1999–2003)

• After PhD, looking for new topic

• Delta Debugging brought together
debugging and version control

• Isolate failure causes through
repeated experiments

@AndreasZeller

DELTA DEBUGGING (1999–2003)

• Delta debugging was a bomb

• Easy to teach + understand

• 7 lines of algorithm
(and 25 lines of Python)

• Spent two years on these

(c′✔, c
′
✘) if |∆| = 1

dd
′(c′✘ \∆i, c

′
✘,2) if ∃i ∈ {1..n} · test(c′✘ \∆i) = ✔

dd
′(c′✔, c

′
✔ ∪∆i,2) if ∃i ∈ {1..n} · test(c′✔ ∪∆i) = ✘

dd
′(c′✔ ∪∆i, c

′
✘,max(n− 1,2)

)

else if ∃i ∈ {1..n} · test(c′✔ ∪∆i) = ✔

dd
′(c′✔, c

′
✘ \∆i,max(n− 1,2)

)

else if ∃i ∈ {1..n} · test(c′✘ \∆i) = ✘

dd
′(c′✔, c

′
✘,min(2n, |∆|)

)

else if n < |∆| (“increase granularity”)

(c′✔, c
′
✘) otherwise

dd(c✔, c✘) = dd
′(c✔, c✘,2)

dd
′(c′✔, c

′

✘, n) =

@AndreasZeller

DELTA DEBUGGING: LESSONS LEARNED

• Work on a real problem

• Assume as little as possible

• Keep things simple

• Have a sound model

– Version control? tests? Never heard of it

– 25 lines of Python is probably excessive

– DD was my version model reborn

– Why debug? We build correct software

@AndreasZeller

MINING SOFTWARE ARCHIVES (2003–2010)

• In the early 2000s, open-source
version repositories became available

• Stephan Diehl saw an opportunity for
visualization and approached me

• Quickly expanded into data mining

• Tom Zimmermann: our MSc student

• Work of a research team

@AndreasZeller

MINING SOFTWARE ARCHIVES (2003–2010)

• Our 2004 paper was the first ICSE
paper on mining software archives

• Handful of competing groups;
instant hit

• MSR now a conference on its own

• Paper has ~1300 citations so far

• Impact at Microsoft, Google, SAP…

@AndreasZeller

MINING SOFTWARE ARCHIVES (2003–2010)

• We are now after the gold rush

• Data still exciting (if you have some)

• Few new insights on old data

• Get out of a field when too crowded 3.5 Programmer Actions and Defects
Now that we know how to predict defects, can we actually prevent
them? Of course, we could focus quality assurance on those files
predicted as most defect-prone. But are there also constructive
ways to avoid these defects? Is there a general rule to learn?

For this purpose, let us now focus on H2: Is there a correlation
between individual actions (= keystrokes) and defects? For this
purpose, we would search for correlations between the count of
the 256 characters and the overall post-defect count per file; our
null hypothesis would be:

H0. There is no correlation between character distribution and
defect-proneness.

After a number of preliminary experiments, we focused on the
Eclipse 3.0 dataset. It is well known that most metrics of software
do not follow a normal distribution and our measures of key-
strokes are no exception. The distributions of characters appear to
have an exponential rather than a power-law character. Nonethe-
less, due to the heavily skewed distribution, we used a standard
non-parametric approach with the Spearman rank correlation. Of
course, with so many metrics (one for each character), we run the
risk of identifying spurious correlations, and we thus employed p-
value adjustment using Benjamini-Hochberg p-value correction
[3] to deal with this multiple hypothesis testing. In order to be
conservative in our findings and avoid Type I errors, we used a p-
value cutoff of ! ! !!!" for statistical significance [4]. Even
after taking these rigorous steps, all letters and digits showed a
statistically significant positive correlation with failures.

For the non-printable characters, this correlation is strongest for
the newline character (0.34). The correlation with newline char-
acters is not surprising: given a constant defect density, a file with
more lines would be assumed to also have more defects. For the
printable characters, though, we observed the highest correlation
for the lower-case letters “i” (0.34), “r” (0.34), “o” (0.34), and “p”
(0.35) – in other words, the more of these letters one would have
in a file, the higher the defect count. This is the more interesting
as these letters do not rank in the most frequently used English
letters; this is also in sharp contrast to characters such as “%”
(0.06) or the uppercase “Z” (0.19). Figure 3 lists the correlations
for the individual lower-case letters.

This high correlation for the specific letters “i” (0.34), “r” (0.34),
“o” (0.34), and “p” (0.35) came as a huge surprise to us; it is these
specific letters that named our approach IROP. All reported cor-
relations are statistically significant (p = 0.01), refuting H0 and
confirming our hypothesis H2.

3.6 Preventing Defects
Correlations like the above give way to immediate action. Our
first idea was to encode the defect likelihood as colors into the
keyboard (Figure 2), such that programmers would be aware of
the risk immediately when undertaking the specific action.

However, such an encoding on the keyboard would not impact
professional programmers, in particular touch typists. Therefore,
we constructed a special keyboard that would make it harder for
programmers to undertake defect-prone actions (Figure 4). Note
how the four letters of failure are conveniently removed, which
forces programmers to rethink their actions and to search for al-
ternatives.1
We deployed this keyboard to three Microsoft interns in our group
to carefully monitor its effect on defect reduction. It quickly
turned out that getting rid of the four letters of failure would not
be an easy task. While our test subjects could easily avoid “i”,
“r”, “o”, and “p” in their identifiers, the largest problem would be

1 We also explored removing the “Enter” key, but experienced

that this led to a sharp increase in the number of defects per line
as well as a drop in productivity (measured as LOC/day). These
effects will be explored in future research.

Our results show a strong correlation between specific pro-
grammer actions (keystrokes I, R, O, and P) and defects.

Figure 2: Color-coding keys by their defect correlation; (red = strong). The five strongest correlations are highlighted.

Figure 3: Defect correlation for the 26 lower-case letters.

@AndreasZeller

MINING SOFTWARE REPOSITORIES:
LESSONS LEARNED

• Work on a real problem

• Assume as little as possible

• Keep things simple

• Have a sound model

• Keep on learning

– Empirical research is core field of SE

– simple parsers for multiple languages

– essence of 2004 paper is one line of SQL

– retrieval, precision, recall, etc, etc

– statistics, data mining, machine learning

@AndreasZeller

FUZZING AND TEST GENERATION (2012–)

• In 2012, ran LangFuzz: a grammar-
based fuzzer for JavaScript

• Found 2,600+ JavaScript bugs so far

• Work on grammar inference +
more grammar-based testing

• Aim: build the best fuzzing
framework ever

URL ::= PROTOCOL '://' AUTHORITY PATH
 ['?' QUERY] ['#' REF]
AUTHORITY ::= [USERINFO '@'] HOST [':' PORT]
PROTOCOL ::= 'http' | 'ftp'
USERINFO ::= /[a-z]+:[a-z]+/
HOST ::= /[a-z.]+/
PORT ::= '80'
PATH ::= /\/[a-z0-9.\/]*/
QUERY ::= 'foo=bar&lorem=ipsum'
REF ::= /[a-z]+/

http://user:password@www.google.com:80/command?foo=bar
 &lorem=ipsum#fragment
http://www.guardian.co.uk/sports/worldcup#results
ftp://bob:12345@ftp.example.com/oss/debian7.iso

http://user:password@www.google.com:80/command?foo=bar

@AndreasZeller

FUZZING AND TEST GENERATION (2017–)

• Teaching hands-on fuzzing
and test generation

• Uses Python and Jupyter

• Prototype state-of-the-art
techniques within minutes

• Interactive textbook
fuzzingbook.org

http://fuzzingbook.org

@AndreasZeller

FUZZING AND TESTING: LESSONS LEARNED

• Work on a real problem

• Assume as little as possible

• Keep things simple

• Have a sound model

• Keep on learning

• Keep on moving

• Build prototypes

– Yes, bugs do exist

– Toss program into black box

– Grammar-based producers

– Grammars and languages

– Constraint solving, search-based testing

– Security starts with SE

– Get your algorithms right first

@AndreasZeller

MORE THINGS I DID (AND DO!)

• Automatic repair

• Automatic parallelization

• Automatic website testing

– Wesley Weimer beat us to it

– Struggled with complexity

– Built a company for that

@AndreasZeller

THINGS I STAYED AWAY FROM

• Software processes

• Formal methods

• Modeling

• Architecture

• Work on a real problem

• Assume as little as possible

• Keep things simple

• Have a sound model

• Keep on learning

• Keep on moving

• Build prototypes

@AndreasZeller

THINGS I STAYED AWAY FROM

• Software processes

• Formal methods

• Modeling

• Architecture

• What is the problem?

• How can you have impact?

• How do you measure
your impact?

@AndreasZeller

MEASURING IMPACT

• How do your actions change the world?

• Society funds research to take risks that no one else does

• Research wants you to take grand challenges –
do not sweat the small stuff; work on the grand stuff

• Saarland University and CISPA expected me to do exactly that

• Worked!
– choose your place wisely

@AndreasZeller

MEASURING IMPACT

• You want to be known for your tool, your algorithm, your book

• You will not be remembered for doing well in a metric
– please cite this frequently

@AndreasZeller

AM I A ROLE MODEL?

• First and foremost, I am a survivor

• There are many people who have done
the same or better – but with less success

• We know too little about these

@AndreasZeller

YOUR WAYS TO HAVE IMPACT

@AndreasZeller

IMPACT AS A RESEARCHER

• Society funds research to take risks that no one else does

• Research is risky by construction –
you should expect to fail, and fail again

• Tenure is meant to allow you to take arbitrarily grand challenges –
so work on the grand stuff

• If you lack resources, try smarter and harder

@AndreasZeller

IMPACT AS A TEACHER

• Teaching can be a great way to multiply your message

• Not only focus on teaching the standards, but also your research

• Teaching your research helps to propagate it and make it accessible

• Engage students on topics dear to you

@AndreasZeller

IMPACT WITH INDUSTRY

• Do work with industry to find problems and frame your work

• Do not work with industry to solve (their) concrete problems

• Your role as researcher is more than a cheap consulting tool

• Many “research” funding schemes are there to subsidize industry

@AndreasZeller

IMPACT THROUGH TOOLS

• Getting your technique out as a tool is a great way to have impact!

• Also allows to check what actual users need (and if they exist)

• A tool can have far more impact than a paper

• Funding agencies and hiring committees begin to realize this

@AndreasZeller

IMPACT AS FOUNDER

• Creating a company out of your research can be great fun!

• Allows you to push your research and ideas into practice

• Again, shows you what the market wants (and what not)

• Plenty of monetary and consultancy support available

@AndreasZeller

IMPACT AS MENTOR

• Working with advanced students (MSc, PhD, PostDoc) can be the
most satisfying part of your job

• The variety of SE research needs universal problem solving skills

• Find such skills besides good grades

@AndreasZeller

A GREAT ENVIRONMENT

• My university (Saarland / Saarbrücken) hired me for a tenured position
although I was the candidate with the fewest publications

• But they liked the papers, so they hired me

• No pressure or incentives on papers, citations, funding, etc.

• One single expectation: long-term impact

• Worked.

@AndreasZeller

ON IMPACT IN SOFTWARE ENGINEERING RESEARCH
ANDREAS ZELLER, CISPA HELMHOLTZ CENTER FOR IT SECURITY

@AndreasZeller

• Work on a real problem

• Assume as little as possible

• Keep things simple

• Have a sound model

• Keep on learning

• Keep on moving

• Build prototypes

ON IMPACT IN SOFTWARE ENGINEERING RESEARCH
ANDREAS ZELLER, CISPA HELMHOLTZ CENTER FOR IT SECURITY

– Security starts with SE

– Get your algorithms right first

– “real” as in “real world”, not “real papers”

– make things fit into real processes

– complexity impresses, but prevents impact

– causality, retrieval, languages, etc etc

– NLP, statistics, machine learning

