e
'-(l.l:': ‘a
ICSE2023

45th International
Conference on
Software Engineering

Melbourne Convention and Exhibition Centre
14-20 May 2023

Boosting Symbolic Execution for
Heap-based Vulnerability Detection
and Exploit Generation

Haoxin TU

SMU

SINGAPORE MANAGEMENT
UNIVERSITY

INTRODUCTION

» Detecting heap-based vulnerabilities (e.g., UAF) and demonstrating their
severity via generating exploits for them are of critical importance.

+ Symbolic execution-based approaches have shown their potential in the
above tasks. However, they still have following fundamental limitations:
+ Path exploration (not vulnerability-oriented)
* Memory modeling (concrete modeling of heap addresses)
» Environment modeling (no native environment support for heap allocation)

* Objective: we aim to design and implement a boosted symbolic execution
engine named HeapX to facilitate the automatic detection and exploitation of
heap-based vulnerabilities.

* Key Insights

» Path searching towards the ones that
are more likely to be vulnerable

» Memory addresses from heap allocation
are dynamically determined

> Native heap address is an important
requirement for exploit generation and
verification

SYSTEM DESIGN

» Overview: a new path exploration
strategy, a new memory model,
and a new environment modeling
solution are expected to be

designed in HeapX.

New Symbolic Execution Engine: HeapX

Unsafe-pointer-oriented path

exploration
p Vulnerabilities
pI:;?:; |:> Concretely mapped symbolic |j‘> or
memory address modeling

Run-time heap supported Exploits

environment modeling

PRELIMINARY RESULTS

Evaluation Criteria

» Performance

» Code coverage

» The number of vulnerabilities
» The number of exploits

For sub-solution 1: FastKLEE [1]

7 . ®

Improvement of Speedups (%)
e
%
°

0 5 10 15 20 25 30 35 40
Utilities in GNU Coreutils

For sub-solution 2: SymLoc [2]

2
£ Symioc (41.0%) 137
2
3 Frama-C (@17 | 126
°
2
£ Coccinelle (856%) | 119
g
£ Valgrind (@50%) | 117
s
8
2 Asan (@50%) | 117
£
0 20 40 60 80 100 120 140

The number of detected (ground truth) use-after-free bugs

For sub-solution 3: Ongoing ...

PROPOSED SOLUTIONS

Sub-solution 1: FastKLEE [1]

» Reduce unnecessary bound-checks on
safe pointers

Traditional
Symbolic Execution
3

) S
code

Representation

Type Inference |A CheckList Fast
System Symbolic Execution

Phase | Phase Il

Sub-solution 2: SymLoc [2]

» Symbolize heap memory addresses
» Support efficient symbolic read/write
» Track the uses of symbolic addresses

Sub-solution 3: HeapExp
» Explore exploitable paths
» Support native heap environment

[©) A vulnerability

True False |

\ True branch \ \ False branch \ Crashing Exploitable Path Attack Targets Setting
a l T Path Exploration (which target to write)
Symbolic address . M Heap overflow
— | Memory
Errors

« —> Buffer Possible targets

(@ symbolic read Automatic Exploit
— Generation
(control-flow hijacking)

Run-time env Support
(Heap addresses)

0x658333206004]

Buffer

symbolic write
@ symbolic memory tracking

B FUTURE WORK [

» Extend FastKLEE for unsafe-
pointer-oriented path
exploration

» Empirical study to learn
existing exploit patterns for
CVEs

» Design new algorithms for
Automatic Exploit Generation

» Integration of all sub-solutions
into one HeapX system

CONTRACT

= Email: haoxintu.2020@phdcs.smu.edu.sg EyaEE
. . . o
O GitHub: https://github.com/haoxintu % foh
135 gt
ot

, Twitter: @tuhaoxin

This research/project is supported by the National Research Foundation, Singapore and the National Satellite of Excellence in Trustworthy Software Systems

(NSoE-TSS) award number NSOE-TSS2019-04.

[1] Haoxin Tu, Lingxiao Jiang, Xuhua Ding, and He Jiang. "FastKLEE: faster symbolic execution via reducing redundant bound checking of type-safe pointers." In ESEC/FSE, pp. 1741-1745. 2022.

[2] Haoxin Tu, Lingxiao Jiang, Jiaqi Hong, Xuhua Ding, and He Jiang, “Concretely Mapped Symbolic Memory Locations for Memory Error Detection” (Major Revision on TSE)

[3] Hong, Jiagi, and Xuhua Ding. “A novel dynamic analysis infrastructure to instrument untrusted execution flow across user-kernel spaces.” In IEEE S&P, pp. 1902-1918. IEEE, 2021.

