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SYSTEM DESIGN

PROPOSED SOLUTIONS

PRELIMINARY RESULTS

FUTURE WORK

• Detecting heap-based vulnerabilities (e.g., UAF) and demonstrating their
severity via generating exploits for them are of critical importance.

• Symbolic execution-based approaches have shown their potential in the
above tasks. However, they still have following fundamental limitations:
• Path exploration (not vulnerability-oriented)
• Memory modeling (concrete modeling of heap addresses)
• Environment modeling (no native environment support for heap allocation)

• Objective: we aim to design and implement a boosted symbolic execution
engine named HeapX to facilitate the automatic detection and exploitation of
heap-based vulnerabilities.

• Overview: a new path exploration 
strategy, a new memory model, 
and a new environment modeling 
solution are expected to be 
designed in HeapX.

Ø Extend FastKLEE for unsafe-
pointer-oriented path
exploration

Ø Empirical study to learn
existing exploit patterns for
CVEs

Ø Design new algorithms for
Automatic Exploit Generation

Ø Integration of all sub-solutions
into one HeapX system

• Key Insights
Ø Path searching towards the ones that

are more likely to be vulnerable
Ø Memory addresses from heap allocation

are dynamically determined
Ø Native heap address is an important

requirement for exploit generation and
verification
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New Symbolic Execution Engine: HeapX

Exploits

Vulnerabilities

Sub-solution 1: FastKLEE [1]
Ø Reduce unnecessary bound-checks on 

safe pointers

Sub-solution 2: SymLoc [2]
Ø Symbolize heap memory addresses
Ø Support efficient symbolic read/write
Ø Track the uses of symbolic addresses

Sub-solution 3: HeapExp
Ø Explore exploitable paths
Ø Support native heap environment

Evaluation Criteria
Ø Performance
Ø Code coverage
Ø The number of vulnerabilities
Ø The number of exploits

For sub-solution 1: FastKLEE [1]

For sub-solution 2: SymLoc [2]

For sub-solution 3: Ongoing …

CONTRACT
Email: haoxintu.2020@phdcs.smu.edu.sg

Twitter:@tuhaoxin

GitHub: https://github.com/haoxintu
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