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INTRODUCTION

» Detecting heap-based vulnerabilities (e.g., UAF) and demonstrating their
severity via generating exploits for them are of critical importance.

+ Symbolic execution-based approaches have shown their potential in the
above tasks. However, they still have following fundamental limitations:
+ Path exploration (not vulnerability-oriented)
* Memory modeling (concrete modeling of heap addresses)
» Environment modeling (no native environment support for heap allocation)

* Objective: we aim to design and implement a boosted symbolic execution
engine named HeapX to facilitate the automatic detection and exploitation of
heap-based vulnerabilities.

* Key Insights

» Path searching towards the ones that
are more likely to be vulnerable

» Memory addresses from heap allocation
are dynamically determined

> Native heap address is an important
requirement for exploit generation and
verification

SYSTEM DESIGN

» Overview: a new path exploration
strategy, a new memory model,
and a new environment modeling
solution are expected to be

designed in HeapX.

New Symbolic Execution Engine: HeapX
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PRELIMINARY RESULTS

Evaluation Criteria

» Performance

» Code coverage

» The number of vulnerabilities
» The number of exploits

For sub-solution 1: FastKLEE [1]
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For sub-solution 2: SymLoc [2]
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For sub-solution 3: Ongoing ...

PROPOSED SOLUTIONS

Sub-solution 1: FastKLEE [1]

» Reduce unnecessary bound-checks on
safe pointers
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Sub-solution 2: SymLoc [2]

» Symbolize heap memory addresses
» Support efficient symbolic read/write
» Track the uses of symbolic addresses

Sub-solution 3: HeapExp
» Explore exploitable paths
» Support native heap environment
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B FUTURE WORK [

» Extend FastKLEE for unsafe-
pointer-oriented path
exploration

» Empirical study to learn
existing exploit patterns for
CVEs

» Design new algorithms for
Automatic Exploit Generation

» Integration of all sub-solutions
into one HeapX system
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