
SMU Classification: Restricted

Boosting Symbolic Execution for 
Heap-based Vulnerability Detection 

and Exploit Generation
Haoxin TU

ACKNOWLEDGEMENT & REFERENCES

INTRODUCTION

This research/project is supported by the National Research Foundation, Singapore and the National Satellite of Excellence in Trustworthy Software Systems 
(NSoE-TSS) award number NSOE-TSS2019-04.
[1] Haoxin Tu, Lingxiao Jiang, Xuhua Ding, and He Jiang. "FastKLEE: faster symbolic execution via reducing redundant bound checking of type-safe pointers." In ESEC/FSE, pp. 1741-1745. 2022.
[2] Haoxin Tu, Lingxiao Jiang, Jiaqi Hong, Xuhua Ding, and He Jiang, “Concretely Mapped Symbolic Memory Locations for Memory Error Detection” (Major Revision on TSE)
[3] Hong, Jiaqi, and Xuhua Ding. “A novel dynamic analysis infrastructure to instrument untrusted execution flow across user-kernel spaces.” In IEEE S&P, pp. 1902-1918. IEEE, 2021.

SYSTEM DESIGN

PROPOSED SOLUTIONS

PRELIMINARY RESULTS

FUTURE WORK

• Detecting heap-based vulnerabilities (e.g., UAF) and demonstrating their
severity via generating exploits for them are of critical importance.

• Symbolic execution-based approaches have shown their potential in the
above tasks. However, they still have following fundamental limitations:
• Path exploration (not vulnerability-oriented)
• Memory modeling (concrete modeling of heap addresses)
• Environment modeling (no native environment support for heap allocation)

• Objective: we aim to design and implement a boosted symbolic execution
engine named HeapX to facilitate the automatic detection and exploitation of
heap-based vulnerabilities.

• Overview: a new path exploration 
strategy, a new memory model, 
and a new environment modeling 
solution are expected to be 
designed in HeapX.

Ø Extend FastKLEE for unsafe-
pointer-oriented path
exploration

Ø Empirical study to learn
existing exploit patterns for
CVEs

Ø Design new algorithms for
Automatic Exploit Generation

Ø Integration of all sub-solutions
into one HeapX system

• Key Insights
Ø Path searching towards the ones that

are more likely to be vulnerable
Ø Memory addresses from heap allocation

are dynamically determined
Ø Native heap address is an important

requirement for exploit generation and
verification

Target
program

Unsafe-pointer-oriented path
exploration

Concretely mapped symbolic
memory address modeling

Run-time heap supported
environment modeling

or

New Symbolic Execution Engine: HeapX

Exploits

Vulnerabilities

Sub-solution 1: FastKLEE [1]
Ø Reduce unnecessary bound-checks on 

safe pointers

Sub-solution 2: SymLoc [2]
Ø Symbolize heap memory addresses
Ø Support efficient symbolic read/write
Ø Track the uses of symbolic addresses

Sub-solution 3: HeapExp
Ø Explore exploitable paths
Ø Support native heap environment

Evaluation Criteria
Ø Performance
Ø Code coverage
Ø The number of vulnerabilities
Ø The number of exploits

For sub-solution 1: FastKLEE [1]

For sub-solution 2: SymLoc [2]

For sub-solution 3: Ongoing …

CONTRACT
Email: haoxintu.2020@phdcs.smu.edu.sg

Twitter:@tuhaoxin

GitHub: https://github.com/haoxintu

Buffer!
Symbolic address

! < #	?

True False

True branch!

Buffer

symbolic read

symbolic write

False branch

… …

0x658333206004

symbolic memory tracking3

Memory
Errors

Exploitable Path
Exploration

Crashing
Path

Run-time env Support
(Heap addresses)

Attack Targets Setting
(which target to write)

Automatic Exploit
Generation

(control-flow hijacking)

Exploits

OASIS [3]

Possible targets
Heap overflow

A vulnerability


