
Boosting Symbolic Execution for Heap-based
Vulnerability Detection and Exploit Generation

Haoxin Tu
Singapore Management University, Singapore

haoxintu.2020@phdcs.smu.edu.sg

Abstract—Heap-based vulnerabilities such as buffer overflow
and use after free are severe flaws in various software systems.
Detecting heap-based vulnerabilities and demonstrating their
severity via generating exploits for them are of critical impor-
tance. Existing symbolic execution-based approaches have shown
their potential in the above tasks. However, they still have some
fundamental limitations in path exploration, memory modeling,
and environment modeling, which significantly impede existing
symbolic execution engines from efficiently and effectively de-
tecting and exploiting heap-based vulnerabilities. The objective
of this thesis is to design and implement a boosted symbolic
execution engine named HEAPX to facilitate the automatic detec-
tion and exploitation of heap-based vulnerabilities. Specifically, a
new path exploration strategy, a new memory model, and a new
environment modeling solution are expected to be designed in
HEAPX, so that the new boosted symbolic execution engine can
detect heap-based vulnerabilities and generate working exploits
for them more efficiently and effectively.

Index Terms—Software security, software reliability, vulnera-
bility detection, automatic exploit generation, symbolic execution

I. MOTIVATION AND PROBLEM STATEMENTS

Heap-based vulnerabilities such as buffer overflow and use
after free are severe flaws in software systems [1], [2]. To

alleviate security risks induced by heap-based vulnerabilities,

a plurality of advanced approaches have been devoted to

automatically detecting them [3]–[5] and exploiting them by

generating exploits for the vulnerabilities to decide which

should be fixed first [6]–[8]. Among the existing approaches,

symbolic execution-based ones have shown their potential in

vulnerability detection and exploitation benefiting from the

versatile capabilities of automatic path exploration and test

case generation in symbolic execution [9]–[11].

Despite the success of symbolic execution applications, ex-

isting symbolic execution engines still suffer from fundamental

limitations in (1) handling the state explosion problem during

path exploration, (2) modeling complex memory objects, and

(3) modeling run-time environment with high fidelity [12],

[13]. These limitations significantly impede existing symbolic

execution engines from efficiently and effectively detecting

and exploiting heap-based vulnerabilities.

To overcome the above limitations, this thesis aims to

investigate the following three main research questions (RQs):

RQ1. How to effectively guide path exploration toward
detecting more heap-based vulnerabilities?

Previous studies target various coverage-based heuristics to

alleviate the path explosion challenge [9], [14], [15]. However,

they are not vulnerability-oriented. Since pointer operations

have a high risk to induce vulnerabilities, a new path search

strategy with the help of pointer checking is needed for

effective path exploration toward vulnerability detection.

RQ2. How to effectively represent memory objects toward
detecting more heap-based vulnerabilities?

Existing modeling of memory addresses are usually rep-

resented as concrete values [9], [16]–[18]. However, such

modeling is not effective enough as the existing modeling

of heap allocation is static (i.e., concrete) but the heap-

based addresses in actual execution should be dynamic (i.e.,

symbolic). Therefore, a new memory model that has more

precise modeling of heap-based memory objects is needed.

RQ3. How to effectively model the run-time environment of
heap allocation towards automatic exploit generation?

Generating working exploits usually requires run-time infor-

mation such as run-time addresses to demonstrate the validity

of the exploits [6]–[8]. However, existing symbolic execution

engines do not consider such an important factor and do not

support either native stack or heap addresses for successfully

launching and validating generated exploits.

II. PROPOSED SOLUTIONS AND EXPECTED

CONTRIBUTIONS

This thesis aims to design and implement a boosted sym-

bolic execution engine named HEAPX to answer the above

questions. Specifically, three new proposed solutions (SOLs)

to be designed in HEAPX are described as follows.

SOL1. The observation is that, instead of a random or

coverage-guided search, a new search towards the more likely

vulnerable paths can be effective for vulnerability detection.

To do so, a type inference system is combined with symbolic

execution to classify the type (safe or unsafe) of pointer

operations before symbolic execution. Here, the unsafe means

the path that is more likely to be vulnerable. Then, an unsafe-
pointer-oriented search strategy can be applied to guide the

path exploration during symbolic execution, which means

execution paths with more unsafe pointer operations will be

the top priority and be explored first.

SOL2. The intuition is that, instead of modeling mem-

ory addresses with concrete ones, a new memory model of

symbolic memory addresses with efficient symbolic memory

read/write operations can be more helpful for vulnerability

detection. Therefore, a new memory model which not only

models memory addresses using symbolic values rather than

218

2023 IEEE/ACM 45th International Conference on Software Engineering: Companion Proceedings (ICSE-Companion)

979-8-3503-2263-7/23/$31.00 ©2023 IEEE
DOI 10.1109/ICSE-Companion58688.2023.00059

concrete ones but also supports efficient symbolic memory

read/write is proposed in HEAPX. Specifically, a new solution

of concretely mapped symbolic memory locations is designed

to support intractable symbolic memory read/write and thus

help detect more heap-based vulnerabilities.

SOL3. The key insight is that, rather than using simulated

memory addresses from heap allocation, run-time information

such as heap native addresses can be useful for the validation

process of exploit generation. So, a new solution that supports

native information of run-time environment is leveraged in

HEAPX. Specifically, dynamic analysis infrastructure such as

OASIS [19] which supports user-space program runs in native

addresses is planned to be integrated into HEAPX to replace

the simulated heap addresses in existing symbolic execution

engines with the new native heap addresses.

This thesis is expected to bring helpful insights and op-

timizations for symbolic execution to facilitate automatic

vulnerability detection and exploit generation. The expected

contributions are summarized as follows:

• A new boosted symbolic execution engine HEAPX to facil-

itate the automatic detection and exploitation of heap-based

vulnerabilities. Developers can take HEAPX as an automatic

tool to analyze their projects for further improving the

reliability and security of the projects.

• Three new techniques are designed in HEAPX to overcome

the limitations in path exploration, memory modeling, and

environment modeling in symbolic execution, respectively.

III. RELATED WORK

A. Automatic Vulnerability Detection

Existing studies in this field can be broadly classified into

three categories: static, dynamic, and symbolic execution-

based approaches. Coccinelle [20], Cppcheck [21], Tscan-

Code [22], and Frama-C [23] are well-known static-based ap-

proaches that rely on certain existing vulnerability patterns to

detect heap-based vulnerabilities. Dynamic approaches either

apply dynamic binary translation to collect required informa-

tion via instrumenting test program at run-time (e.g., Valgrind

[24], Purify [25], and Dr. Memory [26]) or leverage compile-

time instrumentation which adds memory safety checks while

the program compiles (e.g., Mudflap [27] and AddressSanitizer

[28]) to detect potential vulnerabilities. For the symbolic

execution-based ones, KLEE [9] is the leading symbolic exe-

cution engine that can detect many heap-based vulnerabilities

by using a concrete memory model and certain heuristic path

exploration strategies. Then, new search strategies [14], [15]

are designed to alleviate the path explosion challenge, and

new memory models [17], [18], [29], [30] are also proposed

to facilitate the detection of heap-based vulnerabilities. Other

approaches adopt hybrid analysis that combines dynamic and

symbolic execution to detect vulnerabilities [3], [4].

Unlike existing approaches, we aim to detect more heap-

based vulnerabilities based on a new path exploration strategy

and memory model: we propose an unsafe-pointer-oriented
path exploration to explore the paths that are more likely to

have vulnerabilities and a new memory model with concretely

mapped symbolic locations to improve the vulnerability de-

tection capability of existing symbolic execution engines.

B. Automatic Exploit Generation

Early work on AEG focused on the exploitation of stack-

based buffer overflows in user space programs. Avgerinos

et al. proposed two symbolic execution-based systems (AEG

[6] and Mayhem [7]) that both search for stack-based buffer

overflow and generate exploits for them. Repel et al. [31]

demonstrated the first approach to AEG for heap overflows.

Revery [8] uses a mix of fuzzing and symbolic execution

to build exploits. Originating from discussions from Revery,

Gollum [11] adopts the idea of “one-gadget” payloads to

exploit the corruption of data used by the application itself.

KOOBE [10] studies the exploit generation of kernel out-of-

bounds write vulnerabilities.

Different from existing approaches, we focus on supporting

heap native environments in symbolic execution to facilitate

the exploitation of heap-based vulnerabilities. Specially, we

support native heap address space in HEAPX rather than

simulated one to facilitate the validation of generated exploits.

IV. EVALUATION CRITERIA AND PRELIMINARY RESULTS

Evaluation Criteria. To evaluate the effectiveness of the

three new proposed solutions, we plan to separately test them.

For SOL1 and SOL2, we plan to compare HEAPX with

state-of-the-art approaches in terms of code coverage (i.e.,

can HEAPX cover more code?) and vulnerability detection

capability (i.e., can HEAPX detect more vulnerabilities?), over

widely-used benchmarks included heap-based vulnerabilities

such as GNU Coreutils [32]. For SOL3, we plan to use the

exploitability (i.e., can HEAPX generate working exploits?) to

measure the effectiveness of HEAPX over well-known CGC

benchmarks [33] or other important software such compilers.

Preliminary Results. We have two preliminary results on

the first two solutions. First, we proposed FASTKLEE [34] and

have shown the advantage of combing a type inference system

with symbolic execution in terms of performance, achieving up

to 9.1% (5.6% on average) speedups compared with state-of-

the-art approach KLEE. In the near future, we plan to extend

FASTKLEE and apply the unsafe-pointer-oriented path explo-

ration strategy in our future work. Second, we designed a new

memory model and leveraged concretely mapped symbolic

memory locations to alleviate the complex memory modeling

challenge. The preliminary evaluation results show that our

approach can detect 8%-64% more heap-based vulnerabilities

than existing memory detectors.

Timeline Plans. This year before August, we plan to

continue the investigation of RQ1 and finalize the work on

RQ2. For the rest of this year and the first six months of

the next year, we are going to investigate RQ3: we may

first empirically study the existing exploits patterns and learn

what are the common requirements (e.g., the support of native

addresses or the use of specific exploitable patterns) to launch

the working exploits. Then, based on the empirical results, we

plan to design our new strategies for automatically generating

219

working exploits for heap-based vulnerabilities. After that, I

will start to work on preparing the Ph.D. thesis, which is

expected to be defended by December 2024.

ACKNOWLEDGMENT

I appreciate my supervisors very much for their continuous

support and patience as well as the anonymous reviewers for

their insightful comments. This article is partially supported

by the National Research Foundation (NRF) Singapore and

the National Satellite of Excellence in Trustworthy Software

Systems (NSoE-TSS) award number NSOE-TSS2019-04.

REFERENCES

[1] L. Szekeres, M. Payer, T. Wei, and D. Song, “Sok: Eternal war in
memory,” in 2013 IEEE Symposium on Security and Privacy (SP), 2013,
pp. 48–62.

[2] R. M. farkhani, M. Ahmadi, and L. Lu, “PTAuth: Temporal memory
safety via robust points-to authentication,” in 30th USENIX Security
Symposium (USENIX Security), 2021, pp. 1037–1054.

[3] N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang, J. Corbetta,
Y. Shoshitaishvili, C. Kruegel, and G. Vigna, “Driller: Augmenting
fuzzing through selective symbolic execution.” in Proceedings of the
Network and Distributed System Security Symposium (NDSS), vol. 16,
2016, pp. 1–16.

[4] I. Yun, S. Lee, M. Xu, Y. Jang, and T. Kim, “QSYM : A practical
concolic execution engine tailored for hybrid fuzzing,” in 27th USENIX
Security Symposium (USENIX Security), 2018, pp. 745–761.

[5] Y. Chen, P. Li, J. Xu, S. Guo, R. Zhou, Y. Zhang, T. Wei, and L. Lu,
“SAVIOR: Towards bug-driven hybrid testing,” 2020 IEEE Symposium
on Security and Privacy (SP), pp. 1580–1596, 2019.

[6] T. Avgerinos, S. K. Cha, A. Rebert, E. J. Schwartz, M. Woo, and
D. Brumley, “Automatic Exploit Generation,” Communications of the
ACM, vol. 57, no. 2, pp. 74–84, 2014.

[7] S. K. Cha, T. Avgerinos, A. Rebert, and D. Brumley, “Unleashing
mayhem on binary code,” in 2012 IEEE Symposium on Security and
Privacy (SP), 2012, pp. 380–394.

[8] Y. Wang, C. Zhang, X. Xiang, Z. Zhao, W. Li, X. Gong, B. Liu,
K. Chen, and W. Zou, “Revery: From proof-of-concept to exploitable,”
in Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security (CCS), 2018, pp. 1914–1927.

[9] C. Cadar, D. Dunbar, and D. Engler, “KLEE: Unassisted and automatic
generation of high-coverage tests for complex systems programs,” in
Proceedings of the 8th USENIX Conference on Operating Systems
Design and Implementation (OSDI), 2008, pp. 209–224.

[10] W. Chen, X. Zou, G. Li, and Z. Qian, “KOOBE: Towards facilitating
exploit generation of kernel Out-Of-Bounds write vulnerabilities,” in
29th USENIX Security Symposium (USENIX Security), 2020, pp. 1093–
1110.

[11] S. Heelan, T. Melham, and D. Kroening, “Gollum: Modular and greybox
exploit generation for heap overflows in interpreters,” in Proceedings of
the 2019 ACM SIGSAC Conference on Computer and Communications
Security (CCS), 2019, pp. 1689–1706.

[12] R. Baldoni, E. Coppa, D. C. D’elia, C. Demetrescu, and I. Finocchi, “A
survey of symbolic execution techniques,” ACM Comput. Surv., vol. 51,
no. 3, pp. 1–39, 2018.

[13] C. Cadar and K. Sen, “Symbolic execution for software testing: Three
decades later,” Commun. ACM, vol. 56, no. 2, pp. 82–90, 2013.

[14] Y. Li, Z. Su, L. Wang, and X. Li, “Steering symbolic execution to less
traveled paths,” SIGPLAN Not., vol. 48, no. 10, pp. 19–32, 2013.

[15] J. He, G. Sivanrupan, P. Tsankov, and M. Vechev, “Learning to explore
paths for symbolic execution,” in Proceedings of the 2021 ACM SIGSAC
Conference on Computer and Communications Security (CCS), 2021,
pp. 2526–2540.

[16] L. Borzacchiello, E. Coppa, D. Cono D’Elia, and C. Demetrescu,
“Memory models in symbolic execution: key ideas and new thoughts,”
Software Testing, Verification and Reliability, vol. 29, no. 1–8, p. e1722,
2019, e1722 stvr.1722.

[17] D. Trabish, S. Itzhaky, and N. Rinetzky, “A bounded symbolic-size
model for symbolic execution,” in Proceedings of the 30th ACM Joint
European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (ESEC/FSE), 2021, pp. 1190–
1201.

[18] D. Trabish and N. Rinetzky, “Relocatable addressing model for sym-
bolic execution,” in Proceedings of the ACM SIGSOFT International
Symposium on Software Testing and Analysis (ISSTA), 2020, pp. 51–62.

[19] J. Hong and X. Ding, “A novel dynamic analysis infrastructure to
instrument untrusted execution flow across user-kernel spaces,” in IEEE
Symposium on Security and Privacy (SP), 2021, pp. 402–418.

[20] M. C. Olesen, R. R. Hansen, J. L. Lawall, and N. Palix, “Coccinelle:
tool support for automated cert c secure coding standard certification,”
Science of Computer Programming, vol. 91, pp. 141–160, 2014.

[21] D. Marjamäki, “Cppcheck: a tool for static C/C++ code analysis,” 2023.
[22] Tencent, “A fast and accurate static analysis solution

for C/C++, C#, Lua codes,” 2023. [Online]. Available:
https://github.com/Tencent/TscanCode

[23] P. Cuoq, F. Kirchner, N. Kosmatov, V. Prevosto, J. Signoles, and
B. Yakobowski, “Frama-C: A software analysis perspective,” in Pro-
ceedings of the 10th International Conference on Software Engineering
and Formal Methods, 2012, pp. 233–247.

[24] N. Nethercote and J. Seward, “Valgrind: A framework for heavyweight
dynamic binary instrumentation,” in Proceedings of ACM SIGPLAN
Conference on Programming Language Design and Implementation
(PLDI), 2007, pp. 89–100.

[25] R. Hastings, “Purify: Fast detection of memory leaks and access errors,”
in Proceedings of 1992 Winter USENIX Conference, 1992, pp. 125–136.

[26] D. Bruening and Q. Zhao, “Practical memory checking with dr. mem-
ory,” in Proceedings of IEEE Symposium on Code Generation and
Optimization (CGO), 2011, pp. 213–223.

[27] F. C. Eigler, “Mudflap: Pointer use checking for c/c+,” Proceedings of
the First Annual GCC Developers’ Summit, pp. 57–70, 2003.

[28] K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov, “Address-
sanitizer: A fast address sanity checker,” in Proceedings of the USENIX
Annual Technical Conference, 2012, pp. 1–28.

[29] M. Nowack, “Fine-grain memory object representation in symbolic
execution,” in Proceedings of the 34th ACM/IEEE Automated Software
Engineering (ASE), 2019, pp. 912–923.

[30] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino,
A. Dutcher, J. Grosen, S. Feng, C. Hauser, C. Kruegel et al., “Sok:(state
of) the art of war: Offensive techniques in binary analysis,” in 2016 IEEE
Symposium on Security and Privacy (SP), 2016, pp. 138–157.

[31] D. Repel, J. Kinder, and L. Cavallaro, “Modular synthesis of heap
exploits,” in Proceedings of the 2017 Workshop on Programming Lan-
guages and Analysis for Security, 2017, p. 25–35.

[32] G. Coreutils, “A collection of core utilities which are expected
to exist on every operating system,” 2022. [Online]. Available:
https://www.gnu.org/software/coreutils/

[33] Cb-multios, “DARPA Challenges Sets for Linux, Windows, and
macOS,” 2022. [Online]. Available: https://github.com/trailofbits/cb-
multios

[34] H. Tu, L. Jiang, X. Ding, and H. Jiang, “FastKLEE: Faster Symbolic
Execution via Reducing Redundant Bound Checking of Type-Safe
Pointers,” in Proceedings of the 30th ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE), 2022, pp. 1741–1745.

220

