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Background
Ø Symbolic execution is popular

Ø General workflow of traditional symbolic execution engine (e.g., KLEE)
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Efficiency matters when performing symbolic execution
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(1) Observation
– The number of interpreted instructions tends to

be huge (several billion only in one hour run)

(2) Overheads in current symbolic execution
– The color depth represents the overheads of 

an interpreted instruction
– All instructions are equal

Interpretation

Can we reduce the overhead of interpreted instructions
for faster symbolic execution?

...…
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– Only a small portion of memory-related 

instructions need bound checking
– Reduce interpreting overhead of most

frequently interpreted (i.e., load/store)

– Inspired by Type Inference system [1]
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• Advantage: overheads in FastKLEE
– Interpretation overheads for some instructions 

are reduced

Reduced overheads

[1] Ccured: George C. Necula, Jeremy Condit, Matthew Harren, Scott McPeak, and Westley Weimer. 2005. CCured: type-safe retrofitting of legacy software. ACM Trans. Program. Lang. Syst. 27, 3 (May 2005), 477–526.
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• Phase I: Introduce a Type Inference System to classify memory-related instruction types
– Unsafe memory instructions will be stored in CheckList
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• Phase II: Conduct Customized Memory Operation in Fast symbolic execution
– Only perform checking for Unsafe memory instructions during interpretation
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• Results• Benchmark
– GNU Coreutils 
– ~ 1-5k SLOC for each test program

• Metric
– Speedups: the time spent on exploring

the same number of instructions

• 𝑻𝒃𝒂𝒔𝒆𝒍𝒊𝒏𝒆 : existing approach
• 𝑻𝒐𝒖𝒓 : our approach – FastKLEE can reduce by up to 9.1% time compared with the 

state-of-the-art approach (i.e., KLEE)

Fig. Scatter plot of the improvement in speedups
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Video Demo

• Future work
- Follow the idea of FastKLEE to conduct vulnerability-oriented

path exploration for symbolic execution

• Valuable paths: more likely to contain vulnerabilities Code
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Thank you and Questions !


