
1

FastKLEE: Faster Symbolic Execution via 
Reducing Redundant Bound Checking of Type-Safe Pointers

Haoxin Tu, Lingxiao Jiang, Xuhua Ding (Singapore Management University)
He Jiang (Dalian University of Technology)

(Accepted work on Tool Demonstration of FSE 2022)

15/04/2024, Lisbon

The 4th International KLEE Workshop on Symbolic Execution (15–16 April 2024)



Background
Ø Symbolic execution is popular

Ø General workflow of traditional symbolic execution engine (e.g., KLEE)

Symbolic 
Execution

Engine

SMT solver

Path
constraints

Satisfying
Assignments

Test cases
Symbolic
valuesSource

code
Intermediate 

Representation(IR)
1 2

3

2



Background
Ø Symbolic execution is popular

Ø General workflow of traditional symbolic execution engine (e.g., KLEE)

Symbolic 
Execution

Engine

SMT solver

Path
constraints

Satisfying
Assignments

Test cases
Symbolic
valuesSource

code
Intermediate 

Representation(IR)
1 2

3

2

Efficiency matters when performing symbolic execution



Motivation

3



Motivation

3

Traditional
Symbolic Execution

Source code Intermediate 
Representation(IR)

1 2
3



Motivation

3

Traditional
Symbolic Execution

Source code Intermediate 
Representation(IR)

1 2
3

Interpretation



Motivation

3

Traditional
Symbolic Execution

Source code Intermediate 
Representation(IR)

1 2
3

(1) Observation
– The number of interpreted instructions tends to

be huge (several billion only in one hour run)

Interpretation



Motivation

3

Traditional
Symbolic Execution

Source code Intermediate 
Representation(IR)

1 2
3

(1) Observation
– The number of interpreted instructions tends to

be huge (several billion only in one hour run)

(2) Overheads in current symbolic execution
– The color depth represents the overheads of 

an interpreted instruction
– All instructions are equal

Interpretation ...…



Motivation

3

Traditional
Symbolic Execution

Source code Intermediate 
Representation(IR)

1 2
3

(1) Observation
– The number of interpreted instructions tends to

be huge (several billion only in one hour run)

(2) Overheads in current symbolic execution
– The color depth represents the overheads of 

an interpreted instruction
– All instructions are equal

Interpretation

Can we reduce the overhead of interpreted instructions
for faster symbolic execution?

...…



Solution – FastKLEE (1/2)

4

[1] Ccured: George C. Necula, Jeremy Condit, Matthew Harren, Scott McPeak, and Westley Weimer. 2005. CCured: type-safe retrofitting of legacy software. ACM Trans. Program. Lang. Syst. 27, 3 (May 2005), 477–526.



Solution – FastKLEE (1/2)

4

• Key insights

[1] Ccured: George C. Necula, Jeremy Condit, Matthew Harren, Scott McPeak, and Westley Weimer. 2005. CCured: type-safe retrofitting of legacy software. ACM Trans. Program. Lang. Syst. 27, 3 (May 2005), 477–526.



Solution – FastKLEE (1/2)

4

• Key insights
– Only a small portion of memory-related 

instructions need bound checking

[1] Ccured: George C. Necula, Jeremy Condit, Matthew Harren, Scott McPeak, and Westley Weimer. 2005. CCured: type-safe retrofitting of legacy software. ACM Trans. Program. Lang. Syst. 27, 3 (May 2005), 477–526.



Solution – FastKLEE (1/2)

4

• Key insights
– Only a small portion of memory-related 

instructions need bound checking
– Reduce interpreting overhead of most

frequently interpreted (i.e., load/store)

[1] Ccured: George C. Necula, Jeremy Condit, Matthew Harren, Scott McPeak, and Westley Weimer. 2005. CCured: type-safe retrofitting of legacy software. ACM Trans. Program. Lang. Syst. 27, 3 (May 2005), 477–526.



Solution – FastKLEE (1/2)

4

• Key insights
– Only a small portion of memory-related 

instructions need bound checking
– Reduce interpreting overhead of most

frequently interpreted (i.e., load/store)

– Inspired by Type Inference system [1]

[1] Ccured: George C. Necula, Jeremy Condit, Matthew Harren, Scott McPeak, and Westley Weimer. 2005. CCured: type-safe retrofitting of legacy software. ACM Trans. Program. Lang. Syst. 27, 3 (May 2005), 477–526.



Solution – FastKLEE (1/2)

4

• Key insights
– Only a small portion of memory-related 

instructions need bound checking
– Reduce interpreting overhead of most

frequently interpreted (i.e., load/store)

– Inspired by Type Inference system [1]

SAFE/SEQ

WILD

[1] Ccured: George C. Necula, Jeremy Condit, Matthew Harren, Scott McPeak, and Westley Weimer. 2005. CCured: type-safe retrofitting of legacy software. ACM Trans. Program. Lang. Syst. 27, 3 (May 2005), 477–526.



Solution – FastKLEE (1/2)

4

• Key insights
– Only a small portion of memory-related 

instructions need bound checking
– Reduce interpreting overhead of most

frequently interpreted (i.e., load/store)

– Inspired by Type Inference system [1]

SAFE/SEQ

WILD

• Advantage: overheads in FastKLEE
– Interpretation overheads for some instructions 

are reduced

Reduced overheads

[1] Ccured: George C. Necula, Jeremy Condit, Matthew Harren, Scott McPeak, and Westley Weimer. 2005. CCured: type-safe retrofitting of legacy software. ACM Trans. Program. Lang. Syst. 27, 3 (May 2005), 477–526.



5

Solution – FastKLEE (2/2)



5

Traditional
Symbolic Execution

Source code Intermediate 
Representation(IR)

1 2
3

Solution – FastKLEE (2/2)



5

Traditional
Symbolic Execution

Source code Intermediate 
Representation(IR)

1 2
3

Phase I Phase II

Solution – FastKLEE (2/2)



5

• Phase I: Introduce a Type Inference System to classify memory-related instruction types
– Unsafe memory instructions will be stored in CheckList

4

Type Inference
System

Traditional
Symbolic Execution

Source code Intermediate 
Representation(IR)

1 2
3

4
Phase I Phase II

A CheckList

Solution – FastKLEE (2/2)



• Phase II: Conduct Customized Memory Operation in Fast symbolic execution
– Only perform checking for Unsafe memory instructions during interpretation

5

• Phase I: Introduce a Type Inference System to classify memory-related instruction types
– Unsafe memory instructions will be stored in CheckList

4

5

Type Inference
System

Traditional
Symbolic Execution

Source code Intermediate 
Representation(IR)

1 2
3

Fast
Symbolic Execution

54
Phase I Phase II

A CheckList

Solution – FastKLEE (2/2)



Preliminary Evaluation

6



Preliminary Evaluation

6

• Benchmark
– GNU Coreutils 
– ~ 1-5k SLOC for each test program



Preliminary Evaluation

6

• Benchmark
– GNU Coreutils 
– ~ 1-5k SLOC for each test program

• Metric
– Speedups: the time spent on exploring

the same number of instructions

• 𝑻𝒃𝒂𝒔𝒆𝒍𝒊𝒏𝒆 : existing approach
• 𝑻𝒐𝒖𝒓 : our approach



Preliminary Evaluation

6

• Results• Benchmark
– GNU Coreutils 
– ~ 1-5k SLOC for each test program

• Metric
– Speedups: the time spent on exploring

the same number of instructions

• 𝑻𝒃𝒂𝒔𝒆𝒍𝒊𝒏𝒆 : existing approach
• 𝑻𝒐𝒖𝒓 : our approach

Fig. Scatter plot of the improvement in speedups



Preliminary Evaluation

6

• Results• Benchmark
– GNU Coreutils 
– ~ 1-5k SLOC for each test program

• Metric
– Speedups: the time spent on exploring

the same number of instructions

• 𝑻𝒃𝒂𝒔𝒆𝒍𝒊𝒏𝒆 : existing approach
• 𝑻𝒐𝒖𝒓 : our approach – FastKLEE can reduce by up to 9.1% time compared with the 

state-of-the-art approach (i.e., KLEE)

Fig. Scatter plot of the improvement in speedups



Conclusion

7



Conclusion

7

• We present FastKLEE, a faster symbolic execution via reducing the interpretation overheads



Conclusion

7

• We present FastKLEE, a faster symbolic execution via reducing the interpretation overheads

Video Demo

• Future work
- Follow the idea of FastKLEE to conduct vulnerability-oriented

path exploration for symbolic execution

• Valuable paths: more likely to contain vulnerabilities Code



8

The 4th International KLEE Workshop on Symbolic Execution (15–16 April 2024)

FastKLEE: Faster Symbolic Execution via 
Reducing Redundant Bound Checking of Type-Safe Pointers

Haoxin Tu, Lingxiao Jiang, Xuhua Ding (Singapore Management University)
He Jiang (Dalian University of Technology)

Thank you and Questions !


