N A& /& The 4th International KLEE Workshop on Symbolic Execution (15-16 April 2024)

FastKLEE: Faster Symbolic Execution via
Reducing Redundant Bound Checking of Type-Safe Pointers

Haoxin Tu, Lingxiao Jiang, Xuhua Ding (Singapore Management University)
He Jiang (Dalian University of Technology)

(Accepted work on Tool Demonstration of FSE 2022)
15/04/2024, Lisbon

£ SMU

SINGAPORE MANAGEMENT
UNIVERSITY




Background

NNNNNNNNNNNNNNNNNNN

School of
Information Systems

» Symbolic execution is popular

» General workflow of traditional symbolic execution engine (e.g., KLEE)
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(1) Observation

— The number of interpreted instructions tends to
be huge (several billion only in one hour run)

Elapsed: 01: 00: 04

KLEE: done: explored paths = 125017

KLEE: done: avg. constructs per query = 74
KLEE: done: total queries = 8859

KLEE: done: valid queries = 6226

KLEE: done: invalid queries = 2633

KLEE: done: query cex = 8859

KLEE: done: total instructions = 605113213
KLEE: done: completed paths = 125017

KLEE: done: generated tests = 65
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(1) Observation (2) Overheads in current symbolic execution
— The number of interpreted instructions tendsto  — The color depth represents the overheads of
be huge (several billion only in one hour run) an interpreted instruction

— All instructions are equal

Elapsed: 01: 00: 04

KLEE: done: explored paths = 125017

KLEE: done: avg. constructs per query = 74
KLEE: done: total queries = 8859

KLEE: done: valid queries = 6226

KLEE: done: invalid queries = 2633 ——
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KLEE: done: total instructions = 605113213
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(1) Observation

(2) Overheads in current symbolic execution

Can we reduce the overhead of interpreted instructions
for faster symbolic execution?
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KLEE: done: explored paths = 125017

KLEE: done: avg. constructs per query = 74

KLEE: done: total queries = 8859

KLEE: done: valid queries = 6226

KLEE: done: invalid queries = 2633 ——
KLEE: done: query cex = 8859

KLEE: done: total instructions = 605113213

KLEE: done: completed paths = 125017

KLEE: done: generated tests = 65
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[1] Ccured: George C. Necula, Jeremy Condit, Matthew Harren, Scott McPeak, and Westley Weimer. 2005. CCured: type-safe retrofitting of legacy software. ACM Trans. Program. Lang. Syst. 27, 3 (May 2005), 477-526.
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Only a small portion of memory-related
instructions need bound checking

— Reduce interpreting overhead of most
frequently interpreted (i.e., load/store)

— Inspired by Type Inference system [1]

Inference algorithm

SAFE
Pointer kinds c + SEQ
WILD

‘ 0101001010101

WILD 1010000101110

Run-time checks | 1010100100101
0110101010110
C 1000101010101
0101101111001
0010101110101

Type checker x SAFE/SEQ Memory-safe
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. Key insights

Only a small portion of memory-related
instructions need bound checking

— Reduce interpreting overhead of most
frequently interpreted (i.e., load/store)

— Inspired by Type Inference system [1]

Inference algorithm

% Pointer kinds
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SAFE
C + SEQ
WILD

0101001010101

WILD 1010000101110

Run-time checks |1010100100101

0110101010110

1000101010101

0101101111001

0010101110101

Memory-safe

Type checker x SAFE/SEQ e

Advantage: overheads in FastKLEE

Interpretation overheads for some instructions
are reduced

\ ">~ Reduced overheads

.

[1] Ccured: George C. Necula, Jeremy Condit, Matthew Harren, Scott McPeak, and Westley Weimer. 2005. CCured: type-safe retrofitting of legacy software. ACM Trans. Program. Lang. Syst. 27, 3 (May 2005), 477-526.
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O - Phase l: Introduce a Type Inference System to classify memory-related instruction types
— Unsafe memory instructions will be stored in CheckList
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O - Phase l: Introduce a Type Inference System to classify memory-related instruction types
— Unsafe memory instructions will be stored in CheckList

© . Phase ll: Conduct Customized Memory Operation in Fast symbolic execution
— Only perform checking for Unsafe memory instructions during interpretation
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Preliminary Evaluation

- Benchmark

— GNU Coreutils
— ~1-5k SLOC for each test program

. Metric

— Speedups: the time spent on exploring
the same number of instructions

T, — )
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Speedups :
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* T,y : our approach — FastKLEE can reduce by up to 9.1% time compared with the
state-of-the-art approach (i.e., KLEE)
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 Future work

- Follow the idea of FastKLEE to conduct vulnerability-oriented

path exploration for symbolic execution

« Valuable paths: more likely to contain vulnerabilities
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