N A& /& The 4th International KLEE Workshop on Symbolic Execution (15-16 April 2024)

FastKLEE: Faster Symbolic Execution via
Reducing Redundant Bound Checking of Type-Safe Pointers

Haoxin Tu, Lingxiao Jiang, Xuhua Ding (Singapore Management University)
He Jiang (Dalian University of Technology)

(Accepted work on Tool Demonstration of FSE 2022)
15/04/2024, Lisbon

£ SMU

SINGAPORE MANAGEMENT
UNIVERSITY

Background

NNNNNNNNNNNNNNNNNNN

School of
Information Systems

» Symbolic execution is popular

» General workflow of traditional symbolic execution engine (e.g., KLEE)

Symbolic

values

SMT solver

Path
constraints

Satisfying
Assignments

Symbolic

Source
code

Intermediate
"| Representation(IR

Background $SMU

Sct
Information Systems

» Symbolic execution is popular

» General workflow of traditional symbolic execution engine (e.g., KLEE)

SMT solver

Path
constraints

Symbolic ~ Symbolic
Source values Intermediate " Execution S
code "| Representation(IR | Engine

Satisfying
Assignments

Efficiency matters when performing symbolic execution

1 H) School of
MOtquiI o n ‘X(SMU ‘Information Systems
SINGAPORE MANAGEMENT
UNIVERSITY

Motivation SMU

Source code ., Intermedi.ate Traditional
Representation(IR) Symbolic Execution

v

Motivation ¢ SMU_

v

Intermediate Traditional
-)
M Representation(IR) Symbolic Execution

Interpretation

Motivation

Source code —_—

Intermediate
Representation(IR)

SINGAPORE MANAGEMENT

g}" SMU

v

Traditional
Symbolic Execution

UNIVERSITY

(1) Observation

— The number of interpreted instructions tends to
be huge (several billion only in one hour run)

Elapsed: 01: 00: 04

KLEE: done: explored paths = 125017

KLEE: done: avg. constructs per query = 74
KLEE: done: total queries = 8859

KLEE: done: valid queries = 6226

KLEE: done: invalid queries = 2633

KLEE: done: query cex = 8859

KLEE: done: total instructions = 605113213
KLEE: done: completed paths = 125017

KLEE: done: generated tests = 65

Interpretation

Motivation S SMU

Intermediate Traditional
r _— > .
M Representation(IR) Symbolic Execution

v

(1) Observation (2) Overheads in current symbolic execution
— The number of interpreted instructions tendsto — The color depth represents the overheads of
be huge (several billion only in one hour run) an interpreted instruction

— All instructions are equal

Elapsed: 01: 00: 04

KLEE: done: explored paths = 125017

KLEE: done: avg. constructs per query = 74
KLEE: done: total queries = 8859

KLEE: done: valid queries = 6226

KLEE: done: invalid queries = 2633 ——
KLEE: done: query cex = 8859

KLEE: done: total instructions = 605113213
KLEE: done: completed paths = 125017
KLEE: done: generated tests = 65

Interpretation

Source code —_—

Intermediate
Representation(IR)

v

Traditional
Symbolic Execution

(1) Observation

(2) Overheads in current symbolic execution

Can we reduce the overhead of interpreted instructions
for faster symbolic execution?

Elapsed: UT: UL U4

KLEE: done: explored paths = 125017

KLEE: done: avg. constructs per query = 74

KLEE: done: total queries = 8859

KLEE: done: valid queries = 6226

KLEE: done: invalid queries = 2633 ——
KLEE: done: query cex = 8859

KLEE: done: total instructions = 605113213

KLEE: done: completed paths = 125017

KLEE: done: generated tests = 65

Interpretation

School of

Solution - FastKLEE (1/2) o SMU | o sy

[1] Ccured: George C. Necula, Jeremy Condit, Matthew Harren, Scott McPeak, and Westley Weimer. 2005. CCured: type-safe retrofitting of legacy software. ACM Trans. Program. Lang. Syst. 27, 3 (May 2005), 477-526.

Solution - FastKLEE (1/2) o SMU i sson

* Key insights

[1] Ccured: George C. Necula, Jeremy Condit, Matthew Harren, Scott McPeak, and Westley Weimer. 2005. CCured: type-safe retrofitting of legacy software. ACM Trans. Program. Lang. Syst. 27, 3 (May 2005), 477-526.

Solution - FastKLEE (1/2) MU

* Key insights
— Only a small portion of memory-related
instructions need bound checking

[1] Ccured: George C. Necula, Jeremy Condit, Matthew Harren, Scott McPeak, and Westley Weimer. 2005. CCured: type-safe retrofitting of legacy software. ACM Trans. Program. Lang. Syst. 27, 3 (May 2005), 477-526.

* Key insights
— Only a small portion of memory-related
instructions need bound checking
— Reduce interpreting overhead of most
frequently interpreted (i.e., load/store)

[1] Ccured: George C. Necula, Jeremy Condit, Matthew Harren, Scott McPeak, and Westley Weimer. 2005. CCured: type-safe retrofitting of legacy software. ACM Trans. Program. Lang. Syst. 27, 3 (May 2005), 477-526.

. Key insights

Only a small portion of memory-related
instructions need bound checking

— Reduce interpreting overhead of most
frequently interpreted (i.e., load/store)

— Inspired by Type Inference system [1]

[1] Ccured: George C. Necula, Jeremy Condit, Matthew Harren, Scott McPeak, and Westley Weimer. 2005. CCured: type-safe retrofitting of legacy software. ACM Trans. Program. Lang. Syst. 27, 3 (May 2005), 477-526.

Solution - FastKLEE (1/2) SMU
. Key insights

Only a small portion of memory-related
instructions need bound checking

— Reduce interpreting overhead of most
frequently interpreted (i.e., load/store)

— Inspired by Type Inference system [1]

Inference algorithm

SAFE
Pointer kinds c + SEQ
WILD

‘ 0101001010101

WILD 1010000101110

Run-time checks | 1010100100101
0110101010110
C 1000101010101
0101101111001
0010101110101

Type checker x SAFE/SEQ Memory-safe

[1] Ccured: George C. Necula, Jeremy Condit, Matthew Harren, Scott McPeak, and Westley Weimer. 2005. CCured: type-safe retrofitting of legacy software. ACM Trans. Program. Lang. Syst. 27, 3 (May 2005), 477-526.

. Key insights

Only a small portion of memory-related
instructions need bound checking

— Reduce interpreting overhead of most
frequently interpreted (i.e., load/store)

— Inspired by Type Inference system [1]

Inference algorithm

% Pointer kinds

\

C

SAFE
C + SEQ
WILD

0101001010101

WILD 1010000101110

Run-time checks |1010100100101

0110101010110

1000101010101

0101101111001

0010101110101

Memory-safe

Type checker x SAFE/SEQ e

Advantage: overheads in FastKLEE

Interpretation overheads for some instructions
are reduced

\ ">~ Reduced overheads

.

[1] Ccured: George C. Necula, Jeremy Condit, Matthew Harren, Scott McPeak, and Westley Weimer. 2005. CCured: type-safe retrofitting of legacy software. ACM Trans. Program. Lang. Syst. 27, 3 (May 2005), 477-526.

Solution - FastKLEE (2/2) o SMU i sy

Solution - FastKLEE (2/2)

NNNNNNNNNNNNNNNNNNN

Sourcecode | —— » Intermediate
Representation(IR)

v

Traditional
Symbolic Execution

Solution - FastKLEE (2/2) o SMU - iiaion o

v

Intermediate Traditional
N ;
M Representation(IR) Symbolic Execution

Phase | Phase Il

v

Intermediate Traditional
r e .
Source code Representation(IR) Symbolic Execution

A CheckList

Phase | Phase Il

Type Inference
System

»
»

O - Phase l: Introduce a Type Inference System to classify memory-related instruction types
— Unsafe memory instructions will be stored in CheckList

Sourcecode | —— » Intermediate
Representation(IR)

Type Inference
System

A CheckList

v

Traditional
Symbolic Execution

Phase |

Fast
Symbolic Execution

Phase Il

O - Phase l: Introduce a Type Inference System to classify memory-related instruction types
— Unsafe memory instructions will be stored in CheckList

© . Phase ll: Conduct Customized Memory Operation in Fast symbolic execution
— Only perform checking for Unsafe memory instructions during interpretation

Preliminary Evalvation &

—~—
) ¢ School of .
f SMU Information Systems
SINGAPORE MANAGEMENT
TY

Preliminary Evalvation &

- Benchmark

— GNU Coreutils
— ~1-5k SLOC for each test program

NNNNNNNNNNNNNNNNNNN

Preliminary Evaluation

- Benchmark

— GNU Coreutils
— ~1-5k SLOC for each test program

. Metric

— Speedups: the time spent on exploring
the same number of instructions

T, —)
baseline our % 100

Speedups :

Tbasel ine

T paseline - €Xisting approach
- T,, :ourapproach

imi : L SMU
Preliminary Evaluation M
- Benchmark - Results
— GNU Coreutils 10
([
— ~ 1-5k SLOC for each test program _ .
s °
2 6 o® o . « °°
J.)' [7Y ¢ .. o ® .. .‘ o ©
. S 1 o °
- Metric g 4-Tot o o I
— Speedups: the time spent on exploring § ° ®
the same number of instructions o 2
0
0 5 10 15 20 25 30 35 40

Utilities in GNU Coreutils

Tpaseline — Tour % 100 _)]
Fig. Scatter plot of the improvement in speedups

Speedups :

Tbasel ine

T paseline - €Xisting approach
- T,, :ourapproach

- Benchmark - Results
— GNU Coreutils 10
o
— ~ 1-5k SLOC for each test program _
°\: 8 o ® °
3 . ° o o
=1 @ o
g o s o o e ‘
) LY % © ° o*® .. o ©
. % I o °
- Metric 34 o o — i
— Speedups: the time spent on exploring § ‘ °
the same number of instructions a2 2
0
0 5 10 15 20 25 30 35 40

Utilities in GNU Coreutils

Tpasetine — Tour % 100 _) _
Fig. Scatter plot of the improvement in speedups

Tbaseline

Speedups :

T paseline - €Xisting approach

* T,y : our approach — FastKLEE can reduce by up to 9.1% time compared with the
state-of-the-art approach (i.e., KLEE)

J School of

C o n C I H ‘X(SMU ‘Information Systems

SINGAPORE MANAGEMENT
usion

- We present FastKLEE, a faster symbolic execution via reducing the interpretation overheads

10

o
Intermediat Traditional s 8 ®e,
ntermediate raditiona e o °
r e . B 7]
Source code Representation(IR) Symbolic Execution c o % o .
g 6 o® PY ®
a ® ® C) ®
= o [) O
o o) ° [
> 4 ® L °® o
heckList £ @)
Type Inference AC Fast S o
System o Symbolic Execution 5 ,
o
Phasel Phase Il
0
0 5 10 15 20 25 30 35 40

Utilities in GNU Coreutils

- We present FastKLEE, a faster symbolic execution via reducing the interpretation overheads

10

< 8 ® o
Intermediate Traditional ~ o ° °
Sourcecode | ——» : _— »
L/& Representation(IR) Symbolic Execution g ° % * .
% 6 o, o L —
= o [] O
o O ° (]
> 4 ® L P o
heckList Z ®
Type Inference AC Fast S o
System o Symbolic Execution 5 ,
o
Phasel Phase Il
0
0 5 10 15 20 25 30 35 40

Utilities in GNU Coreutils

 Future work

- Follow the idea of FastKLEE to conduct vulnerability-oriented

path exploration for symbolic execution

« Valuable paths: more likely to contain vulnerabilities

N A& /&, The 4th International KLEE Workshop on Symbolic Execution (15-16 April 2024)

Thank you and Questions !

FastKLEE: Faster Symbolic Execution via
Reducing Redundant Bound Checking of Type-Safe Pointers

Haoxin Tu, Lingxiao Jiang, Xuhua Ding (Singapore Management University)
He Jiang (Dalian University of Technology)

X SMU @ ArdiEaA f

SINGAPORE MANAGEMENT Dalian University Of Technology
UNIVERSITY

