
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 1

Concretely Mapped Symbolic Memory Locations
for Memory Error Detection

Haoxin Tu, Lingxiao Jiang, Jiaqi Hong, Xuhua Ding, and He Jiang∗

Abstract—Memory allocation is a fundamental operation for managing memory objects in many programming languages. Misusing
allocated memory objects (e.g., buffer overflow and use-after-free) can have catastrophic consequences. Symbolic execution-based
approaches have been used to detect such memory errors, benefiting from their capabilities in automatic path exploration and test
case generation. However, existing symbolic execution engines still suffer from fundamental limitations in modeling dynamic memory
layouts; they either represent the locations of memory objects as concrete addresses and thus limit their analyses only to specific
address layouts and miss errors that may only occur when the objects are located at special addresses, or represent the locations
as simple symbolic variables without sufficient constraints and thus suffer from memory state explosion when they execute read/write
operations involving symbolic addresses. Such limitations hinder the existing symbolic execution engines from effectively detecting
certain memory errors. In this study, we propose SYMLOC, a symbolic execution-based approach that uses concretely mapped symbolic
memory locations to alleviate the limitations mentioned above. Specifically, a new integration of three techniques is designed in SYMLOC:
(1) the symbolization of addresses and encoding of symbolic addresses into path constraints, (2) the symbolic memory read/write
operations using a symbolic-concrete memory map, and (3) the automatic tracking of the uses of symbolic memory locations. We build
SYMLOC on top of the well-known symbolic execution engine KLEE and demonstrate its benefits in terms of memory error detection
and code coverage capabilities. Our evaluation results show that: for address-specific spatial memory errors, SYMLOC can detect 23
more errors in GNU Coreutils, Make, and m4 programs that are difficult for other approaches to detect, and cover 15% and 48% more
unique lines of code in the programs than two baseline approaches; for temporal memory errors, SYMLOC can detect 8%-64% more
errors in the Juliet Test Suite than various existing state-of-the-art memory error detectors. We also present two case studies to show
sample memory errors detected by SYMLOC along with their root causes and implications.

Index Terms—Software Reliability, Software Security, Memory Errors, Program Analysis, Symbolic Execution

F

1 INTRODUCTION

M EMORY allocation functions (e.g., malloc and free)
are fundamental operations for managing memory

objects in programs written in C/C++ programming lan-
guages [1], [2]. However, previous studies [3], [4], [5], [6],
[7] show that memory errors such as buffer overflow and use-
after-free caused by misuse of such allocation functions are
common and can have catastrophic consequences [8].

To facilitate the detection of memory errors, many tech-
niques have been proposed, including static analysis-based
approaches such as Frama-C [9] and Coccinelle [10], dy-
namic analysis-based approaches such as Valgrind [11] and
Asan [12], and symbolic execution-based approaches such
as KLEE [13] and symsize [14].

Symbolic execution could be one of the most automated
approaches to detect memory errors since it can automat-
ically explore different paths in programs and generate

* He Jiang is the corresponding author.

• Haoxin Tu is with the School of Computing and Information Systems,
Singapore Management University, Singapore. Haoxin Tu is also with
the School of Software, Dalian University of Technology, Dalian, China.
E-mail: haoxintu.2020@phdcs.smu.edu.sg

• Lingxiao Jiang, Jiaqi Hong, and Xuhua Ding are with the School of
Computing and Information Systems, Singapore Management Univer-
sity, Singapore. E-mails: lxjiang@smu.edu.sg, jqhong@smu.edu.sg, xhd-
ing@smu.edu.sg

• He Jiang is with the School of Software, Dalian University of Technology,
Dalian, China, and Key Laboratory for Ubiquitous Network and Service
Software of Liaoning Province. He Jiang is also with DUT Artificial
Intelligence, Dalian, China. E-mail: jianghe@dlut.edu.cn

actionable test cases to assist in validating a reported error
[15]. In contrast, static analyses usually do not excel at gen-
erating test cases to validate an error reported for a program
and dynamic analyses have trouble covering different paths
in the program. Benefiting from its capabilities in automatic
path exploration and test case generation, symbolic exe-
cution has become a popular technique broadly adopted
in many domains, e.g., test case generation [13], [16], [17],
bug-detection [13], [18], [19], debugging and repairing [20],
[21], [22], [23], [24], cross-checking [25], [26], side-channel
analysis [27], [28], [29], and exploit generation [30], [31], [32].

Despite the success of symbolic execution, existing sym-
bolic execution engines still suffer from fundamental limi-
tations in modeling memory addresses related to memory
allocation functions. Specifically, most existing symbolic
execution engines, such as KLEE [13] and symsize [14],
usually model the locations of dynamically allocated mem-
ory objects (e.g., malloc in C/C++) with concrete values,
where each object is located at a fixed address. However,
those address values should be non-deterministic during
actual executions as they are dynamically allocated based
on different run-time environments. The limitation may
cause existing symbolic execution engines to miss detecting
certain kinds of memory errors. First, since the engines do
not encode memory addresses into path constraints, they
may not be able to cover certain lines of code whose exe-
cutions are dependent on the memory addresses and miss
certain address-specific spatial memory errors such as buffer
overflow. Second, without maintaining and tracking the con-

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 2

straints among the addresses of different memory objects,
they may fail to reliably check for unsafe uses of memory
objects and miss certain temporal memory errors such as
use-after-free or double-free. Even though the engines allow
symbolization of the memory addresses, without proper
handling of read/write operations involving symbolic ad-
dresses, the engines can face memory state explosion and
cannot explore the programs effectively. Therefore, existing
symbolic execution engines need better ways to model the
addresses of dynamically allocated memory objects for more
effective detection of memory errors in programs.

Since the locations of dynamically allocated memory
objects can be nearly arbitrary, a more complete (i.e., treat
those locations as symbolic and make greater use of those
symbols) modeling of those locations can help explore more
execution paths and detect more memory errors in the test
program. Hence, we believe that a symbolic execution en-
gine should satisfy at least the following three fundamental
capabilities to comply with the more complete modeling
requirements: 1) symbolization of addresses and modeling
them into path constraints, 2) practical read/write operation
from/to symbolic addresses, and 3) effectively tracking the
uses of symbolic addresses. Unfortunately, no existing sym-
bolic execution engine fulfills all the above requirements.
For example, KLEE [13] or symsize [14] satisfies none of
those requirements. They treat memory locations as con-
crete; even though one can force an address to be symbolic,
the subsequent symbolic memory operations would fail as
the engines usually concretize the symbolic addresses to
invalid ones, thus producing false alarms of errors. A recent
work, RAM [33], satisfies requirements #2 and partially #1
but not #3. It simply assumes that the memory locations
do not affect the behavior or execution paths so it does not
encode them into path constraints. Unfortunately, such an
assumption is not always valid in the real world (see more
details in the code example in Fig. 1).

This paper proposes SYMLOC to integrate three tech-
niques, i.e., address symbolization, a symbolic-concrete
memory map, and symbolic memory tracking, to meet all
the above three fundamental requirements. With the new
integration of the techniques, SYMLOC can more effectively
detect memory errors: (1) by encoding symbolic addresses
into path constraints and equipped with the symbolic-
concrete memory map, SYMLOC is able to cover more code
and detect more address-specific spatial memory errors;
(2) by enabling the automatic propagation of symbolic ad-
dresses in symbolic execution, SYMLOC is able to detect
temporal memory errors reliably.

We have built SYMLOC on top of KLEE and evaluated
its effectiveness. Our empirical evaluation results show that:
(1) SYMLOC is able to detect 23 more address-specific spatial
memory errors and cover 15% and 48% more unique lines
of code than two symbolic execution engines (i.e., KLEE
[13] and symsize [14]) over GNU Coreutils, Make, and
m4 programs; (2) when compared against various state-
of-the-art memory error detectors [3], including symbolic
executors (KLEE and symsize), static detectors (Frama-C [9]
and Coccinelle [10]), and dynamic detectors (Vargrind [11]
and Asan [12]), over the C/C++ programs in Juliet Test
Suite (JTS) datasets [34], SYMLOC can reliably detect 8%-
64% more errors than comparative memory error detectors.

In short, this paper makes the following contributions.
• We propose a novel approach named SYMLOC that inte-

grates three techniques to satisfy the three fundamental
capability requirements for symbolic execution involving
memory allocation functions, which facilitates more effec-
tive detection of memory errors in C/C++ programs.

• We empirically demonstrate the effectiveness of SYM-
LOC against many other state-of-the-art memory error
detectors over various real-world benchmark programs,
and showcase two sample memory errors undetected by
existing approaches as well as discuss their implications.

• We release a replication package for SYMLOC1 to facili-
tate future work on more optimized symbolic execution
engines and more effective memory error detection.
Organization. Section 2 gives the background and mo-

tivating examples. Section 3 describes the design and im-
plementation of SYMLOC. Section 4 presents our evaluation
results. Section 6 discusses additional findings and threats to
the validity of SYMLOC. Section 5 presents two case studies
showing sample memory errors detected by SYMLOC along
with their root causes. Section 6 discusses the pros and cons
of SYMLOC in relation to various other techniques with
the same purpose, limitations, as well as threats to validity.
Sections 7 and 8 describe more related work and conclude
with future work. The Appendix discusses two extra case
studies indicating the usefulness of SYMLOC.

2 MOTIVATION

This section describes common memory errors briefly, and
shows two examples to illustrate the limitations of existing
approaches and highlight the advantages of our approach.

2.1 Common Memory Errors
Memory errors can broadly be divided into two categories:
spatial and temporal errors [5], [35], [36], [37].

Spatial memory errors. Such errors are usually in two
forms: (1) Out-Of-Bound (OOB) or buffer overflow – assessing
(i.e., read or write) to an address that is out of bound of a
valid memory area (a.k.a. a buffer); (2) NULL Pointer Error —
dereferencing null pointers or uninitialized wild pointers. In
this paper, we refer to them as address-specific errors as they
violate proper usage of the specific allocated address of a
memory object.

Temporal memory errors. Such errors broadly fall into
the following three types [5] involving a sequence of more
than one memory operation: (1) Use-After-Free (UAF) – ac-
cessing a memory area via a pointer after the memory area
pointed to by the pointer has been deallocated; (2) Double-
Free (DoF) – deallocating a memory area again via a pointer
after the memory area pointed to by the pointer has been
deallocated, which can be considered a special case of UAF;
(3) Invalid-Free (InF) – deallocating a memory area via a
pointer while the pointer does not point to the beginning of
a valid allocated memory area (i.e., freeing a pointer whose
value was not returned by a heap allocator).

Keeping memory spatial and temporal safety is critical for
assuring the quality of software systems [3], [5] because
memory errors can have catastrophic security risks, e.g.,

1. https://github.com/haoxintu/SymLoc

https://github.com/haoxintu/SymLoc

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 3

1 void ∗memmove((void ∗dest, const void ∗src, size_t n){
2 unsigned long int to = (long int) dest;
3 unsigned long int from = (long int) src;
4 if (from == to || n == 0) {
5 .. // Path-A
6 }
7 if (to > from) { /∗ copy in reverse ∗/
8 if (to - from >= (int) n) {
9 int i ; // Path-B

10 for(i=n−1; i>=0; i−−)
11 to[i] = from[i]; // symbolic memory read/write
12 return dest;
13 } else {
14 ... // Path-C
15 }
16 }
17 if (from > to) { /∗ copy forwards ∗/
18 if (from − to >= (int) n)) {
19 ... // Path-D
20 } else {
21 dest[n + 100] = 0; // address−specific memory error
22 ... // Path-E
23 }
24 }
25 return dest;
26 }
27 int main(){
28 char ∗buf1 = malloc (100 ∗ sizeof(char));
29 char ∗buf2 = malloc (50 ∗ sizeof(char));
30 if (buf1 == NULL) { abort(); }
31 if (buf2 == NULL) { abort(); }
32 memmove(buf1, buf2, 10);
33 free(buf1);free(buf2); return 0;
34 } /∗ Example 1 (E1) ∗/

Fig. 1. Existing symbolic executors (e.g., KLEE) are only able to cover
Path-B while missing Path-A,C,D, and the memory error in Path-E

being exploited by attackers [3], [5], [38]. Memory errors
still rank among the most dangerous software errors in
recent CVE announcements [7] and a recent analysis of the
Chromium project shows that more than 50% of serious
memory safety errors are temporal memory errors [39].

Approaches for detecting memory errors. According to
the way to analyze a program to detect certain memory
errors, existing detection approaches can be broadly clas-
sified into three categories: static analysis-based, dynamic
analysis-based, and symbolic execution-based approaches
[3]. Static analysis-based approaches detect errors by ana-
lyzing the source or machine code of the program without
executing it, while dynamic analysis-based approaches re-
port errors by executing test programs. In contrast, symbolic
execution-based approaches are in-between, and they search
for memory errors by simulating the executions. In this
paper, we focus on improving the capabilities of symbolic
execution-based approaches.

2.2 Motivating Examples
The first example shown in Fig. 1 originated from the widely
used implementation of the function memmove() [40], [41],
and the second example shown in Fig. 2 is adapted from
the JTS benchmarks [34] that were used in our experimental
evaluation. In the following, we first explain the execution
flows of each program and then point out the limitations
of existing approaches in detecting certain memory errors.
Finally, we present the main advantages of our approach.

2.2.1 E1: Missing Spatial Memory Errors

Execution flows. The functionality of the memmove() func-
tion shown in Fig. 1 is to copy n bytes from memory area

src to memory area dest and finally return the pointer dest
to users. Note that the copying memory areas are allowed
to be overlapped. The typical implementation logic of this
function is (1) casting two pointer values dest and src to inte-
ger values to and from to avoid undefined behavior2 and (2)
handling different scenarios according to the different loca-
tions of two input memory objects by comparing the casted
values of pointers [40], [41]. There will be five scenarios in
total: the values of the pointers from and to are the same or
the copying size is zero, leading to Path-A in Line 5; the
value of the pointer to is larger than from wo/w overlap
copying, leading to Path-B (Line 9)/Path-C (Line 11); the
value of the pointer to is smaller than from wo/w overlap
copying, leading to Path-D (Line 16)/Path-E (Line 18),
where an address-specific spatial memory error, i.e., buffer
overflow, is hidden in Path-E in Line 21.

Limitations of existing approaches. As aforementioned
in Section 1, static analysis-based approaches can detect the
error. Still, they are hard to produce a useful test case to
reproduce the error. At the same time, dynamic analysis-
based approaches also encounter difficulties as they usually
produce redundant test cases for the shadow area of the test
program or suffer from limited analysis algorithms to catch
certain errors. For symbolic execution-based approaches,
although simple, existing symbolic execution engines miss
the majority of (80%, 4 out of 5) paths due to the fun-
damental design flaw in those engines. Specifically, since
existing engines linearly manage memory objects that are
consecutively allocated, i.e., the value returned from the
second malloc function (Line 29) is always larger than the
value returned from the first one (Line 28), meaning the
value of to is always larger than the value of from. Therefore,
only Path-B (Line 9) will be covered, while missing the
covering of the rest of the four paths, i.e., Path-A, C, D,
and E, thus missing detecting the memory error in Line 21.
Worse still, existing engines (e.g., KLEE) struggle to handle
symbolic memory read/write operations as shown in Line
11. It might be true for some variants of KLEE that do not
always concretize the symbolic address. However, for the
main base version of KLEE, as far as we know, when KLEE
encounters a symbolic address, no matter whether the base
address or the offset is a symbolic value, KLEE concretizes
it (i.e., KLEE leverages a constraint solver to decide which
concrete memory addresses could be given to the symbolic
address) before performing read/write to a symbolic ad-
dress. KLEE sacrifices the accuracy of memory modeling
to continue the execution. In this case, the main version
of KLEE generates false alarms of memory errors mainly
because KLEE simply tries all possible concrete addresses
from the solver (usually from “0”) instead of keeping track
of all valid addresses during execution and giving out the
tracked valid addresses. Since “0” is less likely to be a
valid memory address, any read/write upon this address
will cause a memory error. To avoid such errors, KLEE has
to either add the same implementations as SYMLOC, i.e.,
maintaining a memory map to store the valid base address
of each symbolic address to ensure the normal memory
read/write operations or rely on other advanced techniques

2. Direct comparison of two pointers from different memory objects
is undefined behavior according to C standard (ISO/IEC 9899:201x)

https://www.open-std.org/jtc1/sc22/wg14/www/docs/n1570.pdf

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 4

1 static char ∗ dothing (int magic) {
2 if (magic == 0x1234ABCD) {
3 wchar_t ∗ data1 = NULL;
4 data1 = (wchar_t ∗) malloc (100 ∗ sizeof(wchar_t));
5 if (data1 == NULL) { abort(); }
6 wmemset(data1, L’A’, 100−1);
7 data1[100−1] = L’\0’;
8 free(data1);
9 wprintf(L"%s\n", data1); // use−after−free error 1

10 return NULL;
11 } else {
12 char ∗ data2 = NULL;
13 data2 = (char ∗) malloc (100 ∗ sizeof(char));
14 if (data2 == NULL) { abort(); }
15 memset(data2, ’A’, 100−1);
16 data2[100−1] = ’\0’;
17 free(data2);
18 return data2; // use−after−free error 2
19 }
20 }
21 int main(int argc, char∗∗ argv){
22 int a;
23 read(0, &a, sizeof(int)) ;
24 char ∗ ret = dothing(a);
25 if (ret != NULL)
26 printf("%s\n", ret);
27 return 0;
28 } /∗ Example 2 (E2) ∗/

Fig. 2. Missing the detection of UAF errors

to handle symbolic memory read/write.
Note that to ensure the program quality, the problem of

finding all faults in a program for any meaningful program
is essentially unsolvable [42]. To improve the quality of the
program, a common criterion is to use code path coverage
to comprehensively test the program when we don’t know
beforehand where the faults are [43]. The idea is that if a
large portion of code is covered with no faults, the program
can be more reliable and contain fewer faults. Therefore, it
is necessary to cover all the branches in the code example.

Advantages of SYMLOC. Instead of modeling memory
addresses as concrete ones, SYMLOC first symbolizes those
address values as symbolic ones and then encodes symbolic
addresses into path constraints. Furthermore, a symbolic-
concrete memory map is designed in SYMLOC for efficient
symbolic memory operations, and a relaxed overlapping
property is supported to have better modeling of dynamic
memory allocation behavior. Thus, SYMLOC can smoothly
cover all the branches in Fig. 1 and detect the memory error
in Line 21. Importantly, SYMLOC could provide a useful test
case (i.e., in what conditions the error will be triggered) that
helps developers quickly locate and further fix the error.

2.2.2 E2: Missing Temporal Memory Errors
Execution flows. The program first reads a value from the
user, passes it to the function dothing, and finally, prints
out the content of the string pointed to by the return value
ret if ret is not NULL (Lines 23-26). Inside the function
dothing, it compares the argument magic number against
a specific value (e.g., 0x1234ABCD). If the corresponding
value is provided, the program will go through the subse-
quent branches and exercise potential abort failures or UAF
errors. In the if-branch starting from Line 2, a 100-size buffer
is allocated by invoking the malloc function and two if-
branches (Line 5 and 14) are used to check whether the
allocated address (the value of data1 or data2) equals NULL.
Then, the whole allocated buffer is initialized by calling the

wmemset function in Line 6 or the memset function in Line
15. Note that there are two UAF errors inside this function.
The first UAF error lies in Line 9, where the object data1 is
freed (Line 8) but it is used as an argument in the wprintf
function later in Line 9. The function raises the second UAF
error since a value data2 is freed in 17 but later returned
in Line 18, where the object data2 is further used as an
argument in the printf function in Line 26.

Limitations of existing approaches. Existing state-of-
the-art memory error detectors are struggling to detect both
two UAF errors. Static/dynamic memory error detectors
have at least suffered from two major issues to detect them
successfully. Apart from the limitations of the test case (i.e.,
required values to satisfy the if conditions) generation as we
mentioned, they are also difficult to detect the UAF errors
due to their limited capability in inter-procedure analysis
or handling certain C library functions. Symbolic executors
are easy to get the concrete input to go through the two
branches but still fail to catch both two UAF errors. For
example, the well-known executor KLEE can not detect UAF
error 2 due to its fundamental design issue in their memory
management [44].

Specifically, there are some memory relocation opera-
tions inside of the printf function (code is not shown);
during KLEE’s execution, one of the addresses relocated
inside of the printf function in Line 26 is the same as the
address of the freed object in Line 17. Thus, KLEE will treat
the freed address as “valid” which leads to the missing UAF
error. More importantly, both static/dynamic or symbolic
execution-based approaches need to take extra effort to
track, relate, and check the uses of the potentially enormous
number of memory objects with concrete addresses.

Advantages of SYMLOC. Instead of extra analysis to
track, relate, and check the uses of memory objects with
concrete addresses, SYMLOC effectively validates the safety
of using symbolic memories by checking the propagated
symbolic expressions during symbolic execution. Therefore,
SYMLOC is able to reliably detect the two UAF errors in
Fig. 2. Note that reliable detection in this paper has two
meanings: (1) effectively catches temporal memory errors
and (2) precisely reports the root cause information of those
errors such as “memory error: a use after free is detected”
when a freed memory object is used rather than imprecise
information (e.g., “memory error: out of bound error” reported
by KLEE [13]).

3 DESIGN OF SYMLOC

This section describes the overview of SYMLOC and then
details the design of SYMLOC.

Overview. Fig. 3 presents the high-level design of SYM-
LOC. The main insight is that, to satisfy the three fundamen-
tal requirements as aforementioned in Section 1, we symbol-
ize the return address from dynamically allocated memory
and maintain a concretely mapped map (i.e., SymLocMap) to
enable the symbolic memory operation as well as symbolic
memory tracking. To this end, as shown on the right side of
Fig. 3, we integrate three techniques in SYMLOC. In 1 , the
path constraint encoded address symbolization technique
first treats dynamically allocated addresses as symbolic val-
ues and propagates them into path constraints to enable the

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 5

Overview of SymLoc

31

symLocMap𝛼
Symbolic address

𝛼 == 𝐶 ?

True False

True branch
𝛼

Buffer

symbolic read

symbolic write

False branch

… …

0x555555784d654

symbolic memory operations

(used for memory read/write)

(used for state forking)

1

2 3

Buffer

symbolic memory tracking

+

Fig. 3. High-level design of SYMLOC

comprehensive exploration of execution paths that depend
on memory locations, thus enabling the detection of more
spatial memory errors. In 2 , the symbolic-concrete memory
mapped memory operations technique utilizes the map,
where each symbolic address holds its underlying concrete
buffer, to support performing symbolic memory operations.
In 3 , to make greater use of newly defined symbols, a
new error detection technique tracks the use of symbolic
addresses to assist SYMLOC in performing reliable temporal
error detection. Next, we detail these techniques separately.

3.1 Address Symbolization

3.1.1 Definition of Symbolic Addressing Model

Existing memory addressing models. Memory addressing
models in most symbolic execution engines are designed
to represent the allocated memory objects with as much
concrete information as possible during executions [13].
For example, in KLEE, a memory object mo is presented
as a tuple: (addr, size, arry) ∈ N+ × N+ × A, where
addr is a concrete base address of the mo, size is a concrete
size of the mo, and arry is a solver array that tracks the
concrete or symbolic values written to the mo. N+ means
all the natural numbers corresponding to the indices for all
memory objects. A is the set of all possible solver arrays.

Such memory addressing models often hold the non-
overlapping property, i.e., every memory object in the address
space is within its unique address range which does not
intersect with other memory objects’ address ranges. This
non-overlapping property is useful for identifying a memory
object via an address, i.e., a concrete address a is associated
with at most one memory object that can be determined
by checking if the following condition is true for a mo:
mo.addr ≤ a ≤ mo.addr +mo.size.

Our memory addressing model. A memory object in our
model is presented as follows:

(symAddr, size, arry) ∈ SN+ ×N+ ×A

where symAddr is a symbolic rather than a concrete value
and SN+ represents the set of symbolic variables that main-
tain a concrete address in the range of N+. Note that
we focus on making those addresses that are dynamically
allocated symbolic, i.e., the addresses determined at runtime
by invoking the dynamic memory allocation function (e.g.,
malloc in C/C++). Such allocations can return different
addresses based on the runtime environment or even some

specific addresses desired by hackers when exploiting the
errors [45], [46], [47], [48].

The major benefit of our memory model is that we enable
path exploration in the paths that require a condition involv-
ing address arithmetic and comparison, which is different
from existing symbolic execution engines such as KLEE [13]
and symsize [14]. To exemplify how SYMLOC is capable of
covering more lines of code, take again the code snippets
shown in Fig. 1 as an example. In SYMLOC, the returned
address of the malloc function is represented as a symbolic
variable, say α for the pointer buf1 in Line 28 and β to
the pointer buf2 in Line 29. Then, during path exploration,
every path where the condition relies on the comparison
of pointers will be forked if the current path constraint is
solvable. Later, a constraint solver (e.g., STP [49] or Z3 [50])
will be used to determine the feasibility of those forked
branches, and the satisfied path will be further explored
as the normal symbolic execution does. For example, the
Path-C in Line 11 in Fig. 1 will be encoded as:

(α > β) & (!(α− β >= n))

A capable solver can check the satisfiability of the constraint,
and this constraint can be true and solved to a value that
could help explore the corresponding path Path-C. Em-
powered by such a capability, SYMLOC is able to explore
all five scenarios in the memmove function, enabling the
covering of all five paths from Path-A to Path-E as well
as the error handling code in Lines 30-31, importantly, the
address-specific spatial memory error in Line 21.

It is worth noting that existing symbolic execution en-
gines can easily make the addresses symbolic by invoking
the supported API (e.g., klee_make_symbolic in KLEE).
However, such a default solution brings an intractable prob-
lem since they do not handle symbolic memory operations
(see more details in Section 3.2).

3.1.2 Relaxed Non-overlapping Property
In SYMLOC, we no longer assume the non-overlapping prop-
erty that is held in many other symbolic execution engines.
We opt for such a design mainly because the address can
be dynamically allocated nearly anywhere for each memory
object, and we aim to over-approximate those addresses to in-
vestigate how different memory locations could reflect pro-
gram behaviors under test. Many system memory managers
are capable of allocating the same memory for different
objects for efficiency purposes, which is much different from
the memory allocation supported in existing symbolic exe-
cution engines. For instance, considering the following code
snippet, the addresses of buff1 and buff2 are often the same
in a native-run (violating the non-overlapping assumption)
because the memory manager reuses the memory allocated
for buf1 after the free. Existing symbolic execution engines
always assume the address of buff2 is higher than buff1,
while SYMLOC does not have this restriction and provides
more freedom to explore more execution paths.

1 int ∗buff1 = (int∗) malloc(100 ∗ sizeof(char));
2 free(buff1);
3 int ∗buff2 = (int∗) malloc(100 ∗ sizeof(char));

It is worth noting that there is no need to be free of
the first allocated buffer between two allocation functions

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 6

1 int main(){
2 int ∗p1 = malloc(8); // start manipulating heap allocator
3 free(p1);
4 ... // other implementation code
5 free(p1); // end of manipulating heap allocator
6
7 void ∗p2 = malloc(8);
8 void ∗p3 = malloc(8);
9 if ((long)p2 == (long)p3) BUG(); // bug is triggered

10 return 0;
11 }

Fig. 4. Overlapping allocation example 1: overlapping at the beginning

1 int main(int argc , char∗ argv[]){
2 long long ∗p1,∗p2,∗p3,∗p4;
3 p1 = malloc(0x500 − 8);
4 p2 = malloc(0x500 − 8);
5 p3 = malloc(0x80 − 8);
6
7 free(p2); // start manipulating heap allocator
8 int designed_chunk_size = 0x581;
9 int designed_region_size = 0x580 − 8;

10 ∗(p2−1) = designed_chunk_size; //end of manipulating heap allocator
11
12 p4 = malloc(designed_region_size);
13 if ((long) p4 + 0x500 == (long) p3) BUG(); // bug is triggered
14 return 0;
15 }

Fig. 5. Overlapping allocation example 2: overlapping in the middle

to make the memory chunks that buff1 and buff2 point
to overlapping. Considering two sightly complicated code
examples presented in Fig. 4 and Fig. 5, a programmer can
still make it happen by manipulating the heap allocator. In
the first example3, a programmer may manipulate the heap
allocator to make the chunk p3 pointing to is overlapped
at the beginning of p2, meaning the addresses of p2 and p3
are the same and the bug in Line 9 will be triggered. The
mechanism behind it is that by using the tcache (a thread
local caching strategy in heap management) free lists, after
allocating a chunk and mistakenly freeing it twice, the allo-
cator can return a desired memory location by writing into
the duplicated chunks. Similarly, in the second example4,
after manipulating the heap allocator, i.e., exploiting the
overwrite of a freed chunk size in the unsorted bin (i.e.,
stores small and large freed chunks, which acts as a cache
layer to speed up allocation and deallocation requests) in
order to make a new allocation overlap with an existing
chunk, the chunk p4 is overlapped in the middle of the
chunk p3, making the condition in Line 13 true and the bug
triggering. In this case, the offset “0x500” might be changed
based on different manipulating strategies.

It is also worth noting that we do not claim the cases
in Fig. 4 and Fig. 5 will always happen. Instead, malicious
users (e.g., malicious programmers who have a deep under-
standing of heap allocation) may write the same code which
could lead to certain errors. If that happens, SYMLOC could
help client analyzers pinpoint the root cause of the error,
which contributes to the efficient debugging process.

Applicable scenarios. We recognize that the relaxed
non-overlapping property is not good for all cases. How-
ever, we support it in SymLoc mainly because we aim to

3. This allocation can be successful before the commit d081d of glibc.
4. This allocation can be successful before the commit 88cd0 of glibc.

have closer modeling of the heap allocator. As one of the
best practices when managing memory, it is recommended
that “It is important to free up memory as soon as you are done
using it” [51]. Therefore, frequently allocating and deallo-
cating memory can be widely used in programs (We also
confirmed the benchmarks used in this study follow the
above best practice). In such situations, the addresses from
afterward allocations are more likely to be overlapped with
previous freed ones. In addition, heap allocators may con-
tain vulnerabilities that may be exploited to allocate over-
lapping memory ranges [52]. Therefore, the relaxed non-
overlapping property should be a better choice for modeling
the heap allocation behavior in practice. In contrast, existing
symbolic execution engines (e.g., KLEE) apply strict non-
overlapping property that all the memory objects cannot
be overlapped, thus missing code coverage (e.g., Paths
A, C, D, and E in Fig. 1) and the detection of important
categories of memory errors (e.g., the one shown in Fig. 14).
The relaxed non-overlapping property can have a limitation
in the situation that the program frees memory objects only
once before the execution terminates. Note that we provide
a post-processing option (see Section 3.3 for more details)
to analyze the results by adding extra constraints for each
symbolic address, although SYMLOC does not add more
constraints at the first time mainly due to the performance
issue. Therefore, when an error is reported by SYMLOC,
we run SYMLOC again to perform post-processing to filter
out potential false positives (e.g., the ones that require the
address in the kernel space).

3.2 Symbolic Memory Operations and Tracking
3.2.1 Symbolic Memory Operations

Existing symbolic memory read/write operations. Even
though the base addresses and sizes are concrete in this ad-
dressing model, symbolic addresses can still be introduced
indirectly via symbolic offsets or other symbolic values
stored in memory objects used for indirect addressing. Once
a symbolic address is used during symbolic execution, a
major concern is how to perform memory operations on the
memory location(s) addressed by the symbolic address.

Modern symbolic execution engines (e.g., KLEE [13] or
symsize [14]) often rely on constraint solving to resolve
the symbolic addresses and then determine how to handle
read/write. For example, if a symbolic pointer p is resolved
to a single memory object mo, then a read via p can be
represented as select(mo.addr, e), where e indicates
the offset of p in mo and can be calculated as (p - mo.addr);
a write can be represented as store(mo.addr, e, v)
where v is the value to be written into the eth offset of mo.
If the symbolic pointer p can be resolved to more than one
value, the symbolic execution engine can choose to either
fork the execution states during exploration so that p is
resolved to a single value in each state for easier analysis
[13], [17], or use disjunctive conditions to constrain p to
all the resolved objects [19], [53], [54] and rely on capable
constraint solvers to analyze different combinations of the
select and store operations via pointer p.

By equipping with the address symbolization technique,
an intractable problem that needed to be resolved in SYM-
LOC is the symbolic memory read/write operations during

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 7

execution. This problem is difficult to solve as the sym-
bolic pointer (i.e., address) modeling and resolution is an
unsolved and challenging problem in symbolic execution,
although it has been actively studied in the literature [30],
[31], [55], [56], [57], [58]. The difficulties mainly come from
the possible state explosion due to the huge numbers of
addresses for symbolic values and the heavy constraint res-
olution overheads. To bound the state search space and sim-
plify constraint solving, existing symbolic execution engines
(e.g., KLEE [13]) usually concretize symbolic addresses into
possible concrete values or confine their possible values to
certain memory segments based on current path constraints
during state exploration. However, such strategies always
lead to inaccurate/limited modeling of memory states and
program behavior because only a small number of concrete
values or approximated segments are taken into considera-
tion, thus obstructing the effectiveness of the analysis.

In this study, a symbolic-concrete memory map-based
read/write mechanism is designed for accessing symbolic
memory objects. Note that we do not claim to solve the chal-
lenging problem of symbolic read/write, as we only focus
on enabling symbolic read/write operations by decoupling
the operations from heavy constraint solving and avoiding
incorrect concretization upon symbolic addresses. Our key
idea is that, for each symbolized address returned from a
memory allocation function, via a memory map, we still as-
sociate the symbolic address with a concrete memory buffer
that would be allocated by actually invoking the allocation
function. When encountering a symbolic memory read-
/write operation introduced via memory allocations, the
associated concrete buffer address is provided to perform
the read/write operations, while the address itself remains
symbolic and can be encoded into path constraints when
they are used in branch conditions. As such, our symbolic
memory operations could decouple the symbolic memory
read/write operations from heavy constraint resolution and
guarantee the correctness of the execution. For example,
considering the memory allocation code “char *p = mal-
loc(100)”, SymLoc first declares a symbolic variable for the
variable p and passes it to the path exploration (as shown in
1 in Fig. 3). In the meantime, SymLoc maintains a concrete
value (derived from KLEE) of the symbol. Such a concrete
value will be used to construct a pair “<sym_name, <mo,
obj»” which is stored in the SymLocMap, where sym_name
is a unique name for each memory object and mo/obj are
memory object and object state maintained by KLEE. Then,
the map will be used to further assist symbolic memory
operation and tracking (as shown in 2 and 3 in Fig. 3).

It is also worth noting that the idea of using a mem-
ory map to support the symbolic memory operations is
straightforward but practically useful for alleviating the
path explosion problem in existing symbolic execution en-
gines. In particular, it enables the engine to continue path
exploration even when a symbolic address is unresolved.
Considering the following example code, when KLEE is
applied to explore the if-else branches and use the KLEE’s
API klee_make_symbolic to make the pointer buff sym-
bolic, KLEE can fork two execution states. However, its
exploration of the if and else branches will fail (due to
invalid concretized addresses) or take a long time (because
it tries to explore all possible concrete values for buff) when

it encounters the write to the symbolic buff[1] (Line 6) or
read from the symbolic address (Line 8). In contrast, SYM-
LOC enables the read/write supported by the underlying
concrete buffer associated with the symbolic buff and thus
can smoothly explore those branches.

1 int main() {
2 char temp;
3 char ∗buff = (char ∗) malloc(100 ∗ sizeof(char));
4 klee_make_symbolic(&buff, sizeof(char∗), "buff");
5 if ((long long) buff > (long long) some_address) {
6 buff[1] = ’9’; // write to a symbolic address
7 ...; // code to be explored further
8 } else {
9 temp = buff[1]; // read from a symbolic address

10 ...; // code to be explored further
11 }
12 return 0;
13 }

3.2.2 Symbolic Memory Tracking

As aforementioned in Section 1, existing symbolic execution
engines may struggle to reliably detect certain temporal
memory errors due to their fundamental design downside.
One solution to mitigate the problem may be tracking the
use of concrete values in symbolic execution engines and
checking the possible errors based on tracking results. How-
ever, such a strategy is extremely hard and even practically
impossible, for there will usually be millions of internal
memory objects to maintain during execution. Therefore,
maintaining the checking of those internal memory objects
could be time-consuming, which aggravates the scalability
and performance issues in symbolic execution.

In SYMLOC, the potential of symbolic memory locations
is further activated to perform symbolic memory tracking
for reliably detecting temporal memory errors. In general,
SYMLOC reuses the capability in symbolic execution, i.e.,
automatically propagating and tracking the use of symbolic
addresses during execution, and adds our designed check-
ing strategy to reliably detect temporal memory errors. The
designed checking strategy is straightforward but effective.
Note that the reliability of error detection designed in
SYMLOC has two important forms. First, SYMLOC is able
to effectively catch those errors. Second, SYMLOC could
precisely report the root cause information to end-users
when a potential error is detected. For example, existing
symbolic execution engines (e.g., KLEE [13]) usually emit
bogus “memory error: out of bound error” to end-users, which
may mislead the developers in the debugging process and
significantly affect the development progress. In contrast,
SYMLOC could precisely report “memory error: a use after
free is detected” which could quickly help developers locate
the root cause of the error. It is also worth noting that
existing symbolic execution engines can detect the errors in
the form of out-of-bound memory accesses, invalid pointers,
etc.; however, it would be troublesome for them to reliably
identify the exact types of errors as they would need to
implement extra analysis to track, relate, and check the uses
of the potentially enormous number of memory objects with
concrete addresses.

Algorithm 1 presents the details of symbolic memory
operations and tracking designed in SYMLOC. The function
SymAddrRes takes symLocMap, a symbolic address Sym-
Expr, and a parameter func as inputs and returns a temporal

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 8

Algorithm 1: Symbolic memory operations and tracking

Input: the map symLocMap, a symbolic expression symExpr,
and a function func being executed

Output: a concrete or symbolic expression, or an error
1 conExpr←− ∅ // initialize a concrete expression
2 FreeList←− ∅ // initialize a list to store freed objects
3 Function SymAddrRes(symLocMap, symExpr, func):
4 std::string fname = "free";

// Situation 1: handle read/write for normal functions
5 if (fname.compare(func->getName()) != 0) then
6 if symLocMap.find(symExpr) then
7 detectUAF(symExpr, FreeList)
8 conExpr = getAddr(symLocMap, symExpr)
9 return conExpr

10 else
11 return symExpr

// Situation 2: handle free function
12 if (fname.compare(func->getName()) == 0) then
13 if symLocMap.find(symExpr) then
14 detectDoFOrInF(symExpr, FreeList)
15 FreeList.add(symAddr)
16 conExpr = getAddr(symLocMap, symExp)
17 return conExpr

18 else
19 return symExpr

memory error, a concrete address, or the original symbolic
variable (when unresolved). Since a symbolic address can
be used in different situations, e.g., normal read/write,
parameters for calls to external functions that cannot be
symbolically executed, and a memory object to be freed,
we check for two situations when encountering a symbolic
address based on their differences. First, they handle differ-
ent usages of symbolic expressions that involve the symbols
defined by SymLoc. In terms of implementation, the first
situation (with the function call name not equal to “free”)
is implemented in functions executeMemoryOperation
and callExternalFunction while the second situation
(with the function call name does not equal to “free”) is used
for a special function handler in the function handleFree.
Second, they indicate the locations for different temporal
error detection: SymLoc implements two different functions
detectUAF and detectDoFOrInF to detect UAF, DoF, or InF
errors. Before handling those situations, the algorithm first
initializes a concrete address conAddr to be returned (if
any) and a list FreeList to record freed objects (Lines 1-
2). Then, inside these situations, if the symbolic address
symAdddr is in the map symLocMap (the if condition in
Line 6 or 13 is true), each situation first checks the use
of symbolic addresses aiming to detect potential temporal
memory errors. In the following, if there are no such errors,
the associated concrete address conAddr is returned (Lines
9 and 17) by the calling function getAddr (Lines 8 and 16);
Otherwise, the SymExpr is simply returned (Lines 11 and 19)
to be handled by existing resolution strategies in symbolic
execution engines.

For more complex scenarios, we replace the symbol with
a stored concrete address (i.e., base), and other portions (e.g.,
offset or scale) are kept the same in KLEE. For example,
if the engine got a symbolic expression “α + 100” when

writing over an object, where α is the symbolic address
symbolized by SYMLOC and 100 is the offset, SYMLOC will
leverage Algorithm 1 to replace the symbolic α to a mapped
concrete value in the SymLocMap, say, 0x555555784d654.
Then, the symbolic expression “α + 100” will be written
back to a constant expression “0x555555784d654 + 100” and
the write operation will be conducted over the constant
expression to avoid the potential state explosion due to
forking on α and thus enabling further execution. When
ITE (If-Then-Else) involves different addresses, SYMLOC
inherits the state-maintaining strategy when forking new
states: if the forked ITEs are an EqualExpression and a
NotEqualExpression, the first state will use the concrete value
that complies with the constraints and the second will use
the original symbolic value with the concretely mapped
address when memory operations are involved; if the ITE is
not an Equal or NotEqualExpression (e.g., GreaterExpression),
SYMLOC uses the symbolic variable with the same concrete
mapped address in both two forked states. Note that in the
latter case, we assume the heap allocator could allocate a
memory object under some conditions, and the concretely
mapped addresses are only used for assisting further path
exploration without trapping by the path explosion due
to the forking from the symbolic address. Furthermore, If
the writes happen on the same path, then the later write
would overwrite the previous written values. This operation
is inherited from KLEE’s design for state forking.

During the symbolic execution process, SYMLOC records
all freed memory objects into a FreeList in Line 15, and such
a recording will reliably guide the detection of temporal
memory errors. Due to the different root causes of three
main kinds of errors, SYMLOC performs the correspond-
ing checking on them by invoking detectUAF (in Line
7) or detectDoFOrInF (in Line 14) function. Those two
functions take the symbolic address symAddr and the list
FreeList as inputs and report potential UAF, DoF, or InF
errors. For detecting UAF and DoF errors, SYMLOC directly
checks whether the symbolic variable under handling is in
FreeList. For detecting InF errors, SYMLOC checks the type of
symbolic expression to decide whether the pointer pointers
to the beginning of a heap object or does not point to
any heap object. In this way, SYMLOC could reliably detect
temporal memory errors.

With the above capabilities, SYMLOC is able to perform
efficient symbolic memory operations and could reliably
detect the UAF error in Fig. 2 when the freed variable buf
in Line 4 is used in the external function call printf in
Line 8, where the error is reported in Line 11 in Algorithm
1. It is worth noting that there are static/dynamic detectors
(e.g., Frama-C [9], Coccinelle [10], Valgrind [11], and Asan
[12]) were designed to detect such temporal memory errors
but they need extra analysis algorithms to identify and
track the uses of memory objects to detect errors following
certain patterns. SYMLOC essentially enables the tracking
of memory locations by conveniently utilizing the capa-
bility of symbolic execution: it shares the same core idea
as other program analysis-based checkers, enabling more
error-detection capability in symbolic execution engines,
but without the need for the troubles of building custom
analysis tracking algorithms.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 9

3.3 Implementation of SYMLOC

We implemented SYMLOC on top of KLEE (v2.1) with LLVM
9.0.0 and STP 2.3.3. We modified KLEE’s allocation API
to return symbolic addresses instead of concrete ones and
maintained a memory map to support practical symbolic
memory operations. Our memory model allows the alloca-
tion of memory objects using either concrete or symbolic
addresses for different usages (i.e., three options detailed in
Section 3.1). We also modified the APIs involving memory
read/write, external function calls, and free in KLEE to
support the normal uses of symbolic addresses and the
reliable detection of temporal memory errors (see Algorithm
1 in Section 3.2). Besides, for each test case generated by
SYMLOC, a text file that records essential information (e.g.,
unique names of symbolic addresses, invoking locations,
the forking point, and the free point) is provided to help
facilitate error verification, debugging, or exploit generation.

SYMLOC does not add extra constraints for each sym-
bolic address when detecting new errors mainly due to
the performance issue: more complex constraints for each
symbolic hardness the constraint solving and affect bug
detection capabilities. However, to reduce potential false
positives (e.g., the required address is not in user space)
reported by SYMLOC, SYMLOC supports a post-processing
option to filter out these cases, i.e., SYMLOC adds extra
constraints to validate the validity of each allocated address.
To be specific, for each symbolized address, we augmented
its constraints to be within the address range of user
space (i.e., 0x0-0x7fffffffffff) and re-run the program to filter
such error/false positive reports out. We believe such post-
processing of reported errors can help users analyze the
root causes of the error reports more effectively. For more
complex modeling of relationships of different memory
objects, we leave it as our future work.

Symbolization strategies for users. Although SYMLOC
enables the exploration of more execution paths, introduced
symbolic addresses may lead to additional execution states
forking and more complex path constraints. To alleviate this
problem, our implementation provides three options to end-
users, i.e., the full, random, and selective symbolization of
addresses. The first option is fully symbolization, which
symbolizes every memory location (i.e., returned addresses
of all the memory allocations). The second option is ran-
dom symbolization, which randomly symbolizes memory
locations, which can save some computing resources than
the first option. The final option is selective symboliza-
tion. Such a selection allows users to specify the mem-
ory locations to be symbolized. We provide an API (i.e.,
klee_make_malloc_symbolic for this purpose, where
the memory location after inserting the API will be sym-
bolized. Users can have their own choices to select a more
appropriate way to perform the address symbolization. For
example, the first option takes more computing resources
and may be used for programs with a small number of mem-
ory allocations; the second option can be used when the
number of allocated buffers is large and it is unknown yet
which allocated addresses may affect the program behaviors
during the initial testing of the subject programs; the last
option is preferred when users know what the interesting
allocation points in a program to be analyzed are.

4 EVALUATION

This section presents our experimental settings and results.
We aim to answer the following research questions (RQs):
RQ1: How does SYMLOC perform in detecting spatial

memory errors?
RQ2: How does SYMLOC perform in detecting temporal

memory errors?

4.1 Answers to RQ1
We measure the performance in terms of the number of
spatial memory errors detected and code coverage achieved.

4.1.1 Experimental Settings
Baseline approaches. We focus on a comparison with the
widely used symbolic execution engine KLEE first since we
implement SYMLOC on it. We also use a recent symbolic
execution engine (symsize [14]) that models allocation sizes
during symbolic execution, to see the effects of buffer sizes
on error detection and code coverage. We did not compare
SYMLOC with other static/dynamic memory detectors in
RQ1 because SymLoc is built on a symbolic executor KLEE
and we mainly aim to investigate the multi-path exploration
capability (that is only applicable to symbolic executors)
among comparative approaches, and it should be fairer
to compare with them. To this end, we used a multi-path
exploration mode of comparative symbolic executors and
compared them in terms of code coverage and the number
of errors detected.

Benchmark programs. We use 15 programs in GNU
Coreutils (version 9.0) and two large programs (GNU
Make [59] and m4 [60]) (cf. Table 1) for the evaluation,
as they are commonly used in evaluating various symbolic
execution techniques [13], [14], [33], [61], [62]. We excluded
some Coreutils programs that: (1) do not invoke dynamic
memory allocation through the malloc function or (2) may
cause non-deterministic behaviors (e.g., kill, ptx, and
yes), following existing studies [61], [62].

Running settings. We followed prior work [13], [62]
to set symbolic inputs for GNU Coreutils programs;
we configured the symbolic options based on their input
formats and prior work [33] for the two large programs.
We use Breadth First Search (BFS) to deterministically guide
the path exploration of all the comparative approaches. For
symsize, we run it under Merging mode with optimizations.
We run the benchmarks with a timeout of one hour per test
program, following the same setting as existing studies [13],
[14], [33], [61], [62]. Then, we measure the code coverage
achieved and the errors detected. Besides, we use the full
symbolization option to run the small-size benchmarks and
the random symbolization option to run the large-size bench-
marks. We run our experiments on a Linux PC with Intel(R)
Xeon(R) W-2133 CPU @ 3.60GHz x 12 processors and 64GB
RAM running Ubuntu 18.04 operating system.

4.1.2 Results
1) Spatial memory error detection capability. Table 2
presents the summarized results of detected errors by the
three approaches. The first column represents the error
types, and columns 2-4 record the number of detected
errors by each approach. The row of Spatial Memory Errors

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 10

TABLE 1
The benchmarks used in the evaluation, with their version, size, and

the source lines of code (SLOC)

Benchmark Version Size SLOC

basename 9.0 small-size 1.0K
chroot 9.0 small-size 1.2K
date 9.0 small-size 2.8K
dd 9.0 small-size 2.1K

dircolors 9.0 small-size 1.1K
factor 9.0 small-size 2.2K
head 9.0 small-size 1.4K

ln 9.0 small-size 2.3K
od 9.0 small-size 1.8K
pr 9.0 small-size 2.6K
rm 9.0 small-size 2.6K
seq 9.0 small-size 1.2K
stat 9.0 small-size 2.8K
sum 9.0 small-size 1.6K
tee 9.0 small-size 1.0K

Make 4.2 large-size 20K
m4 1.4.18 large-size 80K

Juliet Test Suite 1.3 - various

represents the number of spatial memory errors detected,
and the row Others indicates other errors such as unsup-
ported modeling of certain program states (e.g., symbolic
size), unsupported interpreting inline assembly code, and
failed external function calls due to symbolic arguments.
We show the relation among the errors detected by the three
approaches as a Venn diagram in Fig. 6.

We observe that SYMLOC significantly outperforms the
others: all the errors reported by KLEE and symsize can be
detected by SYMLOC, and 17 unique errors are address-
specific spatial memory errors that can only be detected by
SYMLOC; SYMLOC improves the error-detection capability
of KLEE and symsize by 169% and 218%, respectively.

To further inspect the causes of the memory errors,
we manually analyze the 17 unique errors detected by
SYMLOC. We categorize the errors mainly based on the
concrete values solved by the constraint solver, and we can
check whether a concrete address can happen in a user-
space (0x0-0x7fffffffffff) or kernel-space (0xffff800000000000-
0xffffffffffffffff) memory region:
Type 1: User space errors. A large portion (i.e., nine) of the

errors are of this type, i.e., they can be potentially repro-
duced in user space.

Type 2: Kernel space errors. Five errors happen when the
memory locations are in kernel space.

Type 3: Mixed-space errors. Three errors are under this
type. The locations of their memory objects are a combi-
nation of user-space and kernel-space, which may involve
complex interactions between the user-space program
and the kernel’s execution to reproduce them.
Since the memory errors in Type 2 and Type 3 are

less likely to happen in user-space programs. Therefore, as
mentioned in Section 3.3, we use the post-processing option
supported by SYMLOC to filter them.

It is worth noting that the remaining errors (i.e., nine)
whose addresses are inside user space can have impor-
tant implications. We carefully checked every error and
sorted them into the following categories based on their
root causes: (1) two NULL pointer dereference issues; (2)

TABLE 2
Results of the overall number of detected errors

Error Types KLEE symsize SYMLOC

Spatial Memory Errors 7 8 25
Others 5 4 10

Total 12 12 35

KLEE symsize

SymLoc

7

17

1

Fig. 6. Distribution of address-specific spatial memory errors
detected by comparative approaches

four caused by an improper comparison between stack and
heap pointers; (3) three caused by a KLEE’s optimization
issue5. For every category of error, we have communicated
with developers to seek their confirmation and suggestions.
We present more details of two NULL pointer dereference
issues in category (1) as case studies in Section 5. For the re-
maining three issues, we discuss another two representative
case studies in categories (2) and (3) in the Appendix.

2) Improved code coverage. Besides the errors detected,
code coverage metrics are often used to measure the ef-
fectiveness of a software testing tool. We use the tool
klee-stat in KLEE to collect branch coverage and the
tool gcov [63] to compute the line coverage information.
klee-stat measures the “internal coverage” of the pro-
gram under test, where the coverage is measured at the level
at which the symbolic execution engine operates—LLVM
bitcode instructions [64]. In contrast, gcov computes the
“external coverage” of the test program. Note that internal
coverage such as branch coverage reported by KLEE is more
correlated with code coverage and even error-detection
capability [65]. For line coverage, we measure the code
covered in both the program itself and the libraries used by
the program (src+lib). Further, we measure how SYMLOC
covers code that is not covered by other approaches. Note
that we re-run the test cases generated by SYMLOC and
measure the code coverage of test programs under test.
Therefore, all lines measured are feasible lines covered by
the test cases produced by SYMLOC.

Unique line coverage. To calculate the unique line cov-
erage of each approach (say A) with respect to another
approach (say B), we first obtain the intersection of the lines
covered by both approaches, i.e., I(A,B) = A ∩ B. Then,
the unique line coverage achieved by A is measured as

Au =
N(A− I(A,B))

N(A− I(A,B)) +N(B − I(A,B))

5. https://gist.github.com/haoxintu/183dda2923965d1e33f64ad59c7f5338

https://gist.github.com/haoxintu/183dda2923965d1e33f64ad59c7f5338

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 11

TABLE 3
Results of branch coverage (measured by klee-stats) and line

coverage (measured by gcov)

KLEE symsize SymLoc KLEE symsize SymLoc
basename 29.17 29.02 29.17 42.20 38.90 38.90

chroot 33.24 33.75 33.93 30.90 32.40 30.90
date 17.66 26.41 17.74 23.80 35.80 23.80
dd 35.96 29.42 36.77 39.60 32.90 39.40

dircolors 35.39 34.92 35.60 44.80 42.40 46.40
factor 26.84 22.76 27.93 24.00 21.30 24.70
head 34.58 31.44 35.96 37.70 17.60 41.70

ln 27.47 24.93 27.80 26.00 19.70 31.40
od 28.43 23.85 28.39 42.10 23.20 40.20
pr 17.99 17.39 18.24 34.50 33.70 34.60
rm 26.02 24.95 28.05 27.70 25.40 31.80
seq 34.71 34.94 34.71 34.80 34.80 34.80
stat 21.10 19.82 21.56 24.20 20.70 24.80
sum 36.20 34.72 36.44 30.10 17.80 30.00
tee 27.75 27.64 28.19 44.10 44.10 44.10
m4 4.58 4.66 4.47 9.50 9.50 8.50

make 20.12 15.90 21.28 22.10 22.10 23.80
Num. of Best 2 3 13 7 5 10

Benchmarks
Branch Coverage (%) Line Coverage (src+lib) (%)

where N(A − I(A,B)) represents the number of lines cov-
ered by A minus the number of intersected lines. Fig. 7 and
Fig. 8 show the results of unique coverage achieved by three
approaches on GNU Coreutils. The labels under the x-axis
indicate the names of the programs, and the values on the y-
axis represent the unique line coverage of each approach. We
can see that SYMLOC achieves higher unique line coverage
in most of the benchmark programs. On average, SYMLOC
is able to cover 15% and 48% more unique lines than KLEE
and symsize, respectively. The result is expected as SYMLOC
has a unique capability to cover code blocks where the
condition depends on the addresses allocated by the heap
allocator. For example, existing symbolic execution engines
(either KLEE [13] or symsize [14]) always assume that the
address of “buf2” is larger than “buf1” in Fig. 1, leading to
limited code coverage. However, such an assumption is not
held in SYMLOC. Specifically, SYMLOC could generate test
cases that exercise unique lines of code, e.g., Path-C in Fig.
1 where the address of “buf2” is smaller than “buf1”.

From Fig. 7 and Fig. 8, we can see that some lines of
code are uniquely covered by KLEE or symsize. The main
reason for this is that SymLoc takes relatively more time
in constraint solving than the two comparative approaches
and in exploring program branches that would not be
explored otherwise, thus may have less time in exploring
some branches that would be explored sooner by other
tools. To support our claim, we use the tool klee-stats
to get how much time is spent on constraint solving for
each approach, i.e., TSolver reported by KLEE, where the
solving time indicates the percentage of the relative time
spent in the solver over the whole program execution time.
As a result, for the four benchmarks (i.e., dd, od, seq, and
sum) that cover more unique lines of code than SymLoc,
the results show KLEE spends 76.89%, 35.78%, 3.27%, and
49.83% time over the whole execution time (i.e., 1 hour) on
constraint solving, whereas SymLoc takes 79.83%, 41.81%,
19.26%, and 65.41% time on solving constraints, respectively.
The results show the same trends when comparing sym-
size with SymLoc. symsize contributes 16.54%, 40.40%, and
45.71% constraint solving time, while SymLoc uses 48.71%,
82.23%, and 48.45% constraint solving time over the three
benchmarks basename, date, and seq, respectively.

Branch and line coverage. As presented in Table 3,

Fig. 7. Unique line coverage (measured by gcov): SYMLOC vs KLEE

Fig. 8. Unique line coverage (measured by gcov): SYMLOC vs symsize

the first column shows the names of benchmark programs,
and the rest of the columns record the branch or line cov-
erage over each program under comparative approaches.
Columns 3-8 are divided into two groups; each group rep-
resents a different coverage metric, i.e., branch coverage or
line coverage. Apart from the numbers in the last row, each
coverage number is calculated as Ncovered

Ntotal
× 100, where the

Ncovered represents the covered number of branches/lines
and Ntotal corresponds to the total number of branches/-
lines. The coverage on m4 and Make is the median value
of five repeated runs. The last row counts the total num-
ber of the best coverage achieved by each approach for
the programs. In terms of branch coverage, we observe
that SYMLOC outperforms KLEE and symsize overall and
dominates 72% (13 out of 18) over all the benchmarks.
Specifically, SYMLOC improves at best by 18% (in factor)
and 25% (in dd) than KLEE and symsize, respectively.

The line coverage results are shown in the last three
columns in Table 3. We observe that SYMLOC is able to
cover more code than KLEE and symsize; it improves the
line coverage by up to 21% (in ln) and 137% (in head) than
KLEE and symsize, respectively.
Impact of different symbolization modes. We run random
and full modes in one of the large-scale benchmarks (i.e.,
Make-4.2) and compare branch coverage and the memory
error detection capability of SYMLOC. Fig. 9 shows the de-
tailed results. As shown in the left side of the box plot in Fig.
9(a), where the x-axis represents two different symbolization
modes and the y-axis describes the branch coverage Bcov
or solving time TSolver reported by KLEE. We can see
the branch coverage in the Full mode is lower than the
one under Random mode. This is reasonable because Full

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 12

full randomfull random
10

12

14

16

18

20

22

24

26

28
B

ra
nc

h
co

ve
ra

ge
 (%

)

full randomfull random

10

20

30

40

50

60

70

80

90

So
lv

in
g

tim
e

(%
)

(a) Branch coverage and constraint
solving time over Make-4.2

full randomfull random
2

3

4

5

6

7

8

N
um

be
r o

f d
et

ec
te

d
m

em
or

y
er

ro
rs

(b) Number of detected errors over
Make-4.2

Fig. 9. Comparison of different symbolization modes in SYMLOC (Full
symbolization mode VS Random symbolization mode)

symbolization means more complex constraints during the
symbolic execution, which leads to more time for constraint
solving. As shown on the right side in Fig. 9(a), we can
observe that the constraint-solving time in Full mode is
significantly larger than the one in Random mode, which
supports our claim. For the error detection capability, the
Full mode is better than the Random mode. This is because
the full symbolization mode has a better chance to explore
more execution paths, thus making a larger number of errors
detected. We did not report the Selective mode because this
is designed for users who have a certain knowledge of the
target program and know how to select a better object to be
symbolized. We have manually tested this mode on selected
benchmarks and the results show it works as expected.

SUMMARY: SYMLOC is able to detect 169% and 218%
more spatial memory errors as well as cover 15% and 48%
more unique lines of code than the two baseline approaches.

4.2 Answers to RQ2

We measure the performance in terms of the number of
temporal memory errors detected and detection time costs.

4.2.1 Experimental Settings
Baseline approaches. We evaluate SYMLOC against differ-
ent kinds of state-of-the-art memory error detectors. We
use two static (Frama-C [9] and Coccinelle [10]) and two
dynamics (Valgrind [11] and Asan [12]) detectors studied
in [3], as they are shown to be the top approaches in
the categories of static and dynamic memory error detec-
tors. For symbolic execution-based approaches, we opt for
symsize [14] and several variants of KLEE for error de-
tection, including, KLEE(DEF), KLEE(DET), KLEE(OPT),
and KLEE(DET+OPT): KLEE(DEF) is the default setting
of KLEE; KLEE(DET) enables “–allocate-determ” option
for deterministic allocation on top of the default KLEE;
KLEE(OPT) compiles the source code with a higher com-
piler optimization (i.e., “-O1”); KLEE(DET+OPT) turns on
the “–allocate-determ” and “-O1” together. The choice of
w/wo the deterministic allocation or higher optimization
is justified by the fact that different configurations of KLEE
can have different effects [66] and the two selected options
could affect the temporal memory error-detection capability
of KLEE as confirmed by KLEE’s authors [44].

Benchmark programs. We use the C/C++ programs in
Juliet Test Suite (JTS) [34] (cf. the last row in Table 1)
that use the malloc function in this subsection. It includes
137 programs in CWE416 that have known UAF and 283
programs in CWE415 that have known DoF. Note that since
the benchmarks used in RQ1 rarely have temporal memory
errors (We run Coccinelle on the benchmarks used in RQ1
and the results show no single temporal memory error is
detected), we then used the wide-used benchmark JTS for
a fairer comparison. So, we compared SymLoc with both
symbolic executors running single-path mode and static/-
dynamic tools over the JTS benchmarks in terms of the
number of memory errors detected.

Running settings. We use the Frama-C (version
Phosphorus-20170501) with “-val” and Coccinelle (version
1.0.4) with the UAF patterns specified with its official UAF
(osdi_kfree.cocci) and DoF (frees.cocci) scripts to static analyses
each test program. Valgrind (version 3.13) is used after
compiling with “gcc-7.5 -O2”. Asan (the built-in version
in LLVM-10) is run with “clang-10 -fsanitize=address -O2”,
following the existing setting [3]. We applied the same
setting to symbolic execution-based approaches on the same
testing machine as RQ1.

4.2.2 Results
1) Comparison with static/dynamic memory detectors. Fig. 10
and Fig. 11 show the experimental results, where the labels
under the x-axis correspond to the number of errors, and the
values on the y-axis represent the total number of errors (the
number on the right side of the bar) or the completeness
of detecting all the errors (the percentage point inside the
bar) detected by each detector. We can see that SYMLOC
performs the best, detecting all (100%) the UAF and DoF
errors in the JTS benchmark.

Reasons for detection failures. Static detectors (i.e.,
Frama-C [9] and Coccinelle [10]) can not detect certain
errors due to two reasons. First, Frama-C is limited in its
inter-procedural analysis and Coccinelle is limited in the
comprehensiveness of its error detection patterns (which
usually need expert knowledge and are time-consuming
to craft), which are insufficient to catch all possible UAF
or DoF errors, especially inter-procedural ones [3]. Second,
both the Frama-C and Coccinelle are limited in analyzing
C++ language so they miss errors written in C++. Dynamic
detectors (i.e., Valgrind [11] and Asan [12]) miss errors
mainly due to their capability of handling certain C library
functions, e.g., wmemset and wprintf presented in Fig. 2.
Adding support for those functions is practically feasible,
but it can amply much overhead. More specifically, they
all use shadow memory, i.e., one-level or multi-level lookup
tables, to store the state of all memory objects. When more
functions are supported, the number of stored objects can
be numerous which may significantly enlarge the search
space. Furthermore, Asan can only detect 44.5% DoF errors,
as its memory error detection is significantly affected by
aggressive compiler optimization levels due to the source-
code level instrumentation [67].

For DoF errors, although SYMLOC and Valgrind are able
to detect all the DoF errors in JTS datasets, SYMLOC can still
have advantages in detecting more errors in general. For
example, consider the example code in Fig. 14 (adapted from

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 13

Fig. 10. Completeness of UAF error detection among static/dynamic
analysis-based approaches (137 in total)

Fig. 11. Completeness of DoF error detection among static/dynamic
analysis-based approaches (283 in total)

a GitHub issue6) beyond the JTS dataset; Valgrind cannot
detect this DoF sometimes due to the same reason why they
miss UAF errors: the allocated buffer in Line 3 can have the
same concrete address as the allocated buffer in Line 1 after
buff1 is freed. In contrast, SYMLOC has no such problem,
and it attributes the freed object to the free list so that it
will report errors if some of the objects in the list are used
later. It is worth noting that some dynamic analysis tool fails
to detect such errors as well. For Valgrind, it cannot detect
this bug mainly due to the limited modeling of dynamically
allocated memory objects as well. Valgrind maintains a
“shadow memory”, which is a mirror of the actual memory
used by the program. For every byte of memory in the
application, there is a corresponding byte (or bytes) in the
shadow memory that records whether the application’s byte
is defined, undefined, or addressable. However, such mod-
eling of the heap still treats the address of x and y differently,
causing the miss detection of the double-free error. Note that
in a native execution of the program, we run this example
10000 times, and the executable always treats the address
of x and y the same and terminates the execution with an
error with “free(): double free detected in tcache 2, Aborted (core
dumped)”. Therefore, based on the above explanation, we
believe this is an error that has a high possibility to occur in
real-world execution.

2) Comparison with variants of KLEE. For UAF error
detection, Fig. 12 shows the overall experimental results.
Since KLEE and most of its variants detect the same num-
ber of errors, we use “KLEE(s)” to refer to each of those
detectors (either KLEE(DEF), KLEE(DET), KLEE(OPT), or
KLEE(DET+OPT)) and do not repeat showing them. From
Fig. 12, we can see that SYMLOC performs the best and
detects all (100%) the UAF and DoF errors, while other de-
tectors miss 27% of UAF memory errors and some variants
(i.e., KLEE(OPT) and KLEE(DET+OPT)) miss nearly half
(i.e., 54.4%) of DoF memory errors in the used benchmarks.

6. https://github.com/staticafi/symbiotic/issues/89

Fig. 12. Completeness of UAF error detection among symbolic
execution-based approaches (137 in total)

Fig. 13. Completeness of DoF error detection among symbolic
execution-based approaches (283 in total)

1 int main() {
2 void ∗x = malloc(100);
3 free(x);
4 void ∗y = malloc(100);
5 if (x == y)
6 free(y);
7 free(y); // a double free error
8 }

Fig. 14. A simple DoF error missed by KLEE [13] and Valgrind [11]

Reasons for detection failures. KLEE and its variants
miss some certain UAF and DoF memory errors mainly
due to the fundamental issue mentioned in Section 2.2.2,
where the addresses of freed memory objects may overlap
with addresses returned in subsequent allocations and thus
the freed objects are mistakenly treated as “valid”, where
the objects should be marked as invalid instead. Besides,
enabling “-allocate-determ” or with higher optimization “-
O1” does not help alleviate the fundamental issue in KLEE’s
internal design. Worse still, the higher optimization may
even aggregate the problem because compiler optimization
can be too aggressive [68], [69], so this is the reason why
KLEE(OPT) and KLEE(DET+OPT) miss nearly half of Dof
memory errors. Note that although the KLEE(DEF) and
KLEE(DET) detect the same errors as SYMLOC, our ap-
proach can still have advantages in detecting more memory
errors in general. For example, consider the example code in
Fig. 14 again, which is also confirmed by experts [70]; KLEE
and its variants cannot detect this DoF sometimes due to the
same reason for missing UAF errors.

It is worth noting that the error information reported
by SYMLOC is more precise as aforementioned in Section
3.2.2. Specifically, SYMLOC could directly report the root
cause of the error such as “use after free”, or “double free”,
while KLEE only yields unclear ones such as “out of bound
error“ or “invalid free”. There is no doubt that more precise
information could assist developers in quickly debugging
and fixing potential errors.

Speed comparison. We also measured the time of
the comparative approaches. For symbolic execution-
based approaches, at first, we count the time spent on
testing all the programs. The results show that SYM-

https://github.com/staticafi/symbiotic/issues/89

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 14

LOC, symsize, KLEE(DEF), KLEE(DET), KLEE(OPT), and
KLEE(DET+OPT) take 150.5, 150.3, 152.8, 152.9, 152.9, and
155.1 seconds on running 137 programs that contain UAF
errors, respectively. For DoF errors, those approaches spend
323.0, 321.2, 332.3, 333.9, 333.3, and 335.2 seconds to finish
283 programs that include DoF errors, respectively. Second,
for the four approaches to detect the same number of DoF
errors as presented in Fig. 11, we compared the time spent
in detecting each of the DoF errors. The results show that
SYMLOC, symsize, KLEE(DEF), and KLEE(DET) spent 1.14,
1.12, 1.18, and 1.18 seconds to detect each error, respectively,
indicating SYMLOC has a relatively lower overhead in de-
tecting temporal memory errors. The results are reasonable
as existing symbolic execution engines (e.g., KLEE [13])
usually look up the freed memory object from its self-
maintained huge memory management pool, which may
take time. symsize takes less time than SYMLOC as it has
a strategy to reduce the time in executing loops when the
number of iterations depends on the buffer size; e.g., in
the programs, KLEE and SYMLOC currently only use 100
as the default buffer size, while symsize tries small ones
such as 1 first. In contrast, SYMLOC catches those errors by
directly searching the memory objects in FreeList mentioned
in Algorithm 1, resulting in a better performance.

For the other memory detectors, Coccinelle, Frama-C,
Valgrind, and Asan spent 12.1, 60.5, 83.2, and 40.7 seconds
to finish all 137 test programs that contain UAF errors, while
31.8, 150.4, 180.3, and 88.9 seconds to run over all 283 test
programs that contain DoF errors. The results are reasonable
as they are very different approaches from symbolic execu-
tion and are expected to be faster than symbolic executors as
they do not need to interpret/simulate program executions.

SUMMARY: SYMLOC has an overall better temporal memory
error detection capability for detecting UAF and DoF errors
than other state-of-the-art static, dynamic, and symbolic
execution-based approaches.

5 CASE STDUIES

This section showcases two errors detected by SYMLOC but
missed by other tools and discusses their implications.

5.1 Case 1: Single NULL Pointer Dereference in rm

NULL pointer dereferencing is a dangerous operation in
memory assessing [7]. SYMLOC can detect certain NULL
pointer dereferencing caused by improper checking on al-
located pointers in complex programs.

Error details. Fig. 15 presents a code example showing
an error that happens when programmers insufficiently
check a possible NULL pointer that is passed across multiple
functions in multiple source files. The functionality of the rm
function in Line 2 is to first find the target files/directories
and then remove found targets if any. In the rm function,
it opens files from one of the argument file in Line 4 and
starts to read the file inside a while-loop in Line 6 through the
function fts_read. Inside the fts_read function, several
if checkings are performed before it sets up the directory
environment via function setup_dir in Line 19. Inside
function setup_dir, the object fts−>fts_cycle.state is allocated
through function malloc in Line 36, and a NULL pointer

1 // From the ./src/ remove.c file:
2 enum RM_status rm (char ∗const ∗file, struct rm_options const ∗x) {
3 ...
4 FTS ∗fts = xfts_open (file, bit_flags , NULL);
5 while (true) {
6 FTSENT ∗ent = fts_read (fts); ...
7 }
8 }
9 // From the ./lib/ fts . c file :

10 FTSENT ∗ fts_read (register FTS ∗sp) {
11 ...
12 if (sp−>fts_cur == NULL || ISSET(FTS_STOP)) return (NULL);
13 p = sp−>fts_cur;
14 ...
15 if ((p = p−>fts_link) != NULL) { ...
16 if (p−>fts_level == FTS_ROOTLEVEL) {
17 if (restore_initial_cwd(sp)) { ... }
18 ...
19 setup_dir(sp) ;
20 goto check_for_dir;
21 }
22 }
23 ...
24 check_for_dir:
25 ...
26 if (p−>fts_info == FTS_D) {
27 if (! enter_dir (sp, p)) { ... }
28 }
29 ...
30 }
31 // From the ./lib/ fts−cycle.c file :
32 static bool setup_dir (FTS ∗fts) {
33 if (fts−>fts_options & (FTS_TIGHT_CYCLE_CHECK |

FTS_LOGICAL)) {
34 ...
35 } else {
36 fts−>fts_cycle.state = malloc (sizeof ∗fts−>fts_cycle.state);
37 if (! fts−>fts_cycle.state)
38 return false;
39 cycle_check_init (fts−>fts_cycle.state);
40 }
41 return true;
42 }
43 // From the ./lib/ cycle−check.c file:
44 void cycle_check_init (struct cycle_check_state ∗state) {
45 state−>chdir_counter = 0;
46 state−>magic = CC_MAGIC;
47 }
48 // From the ./lib/ fts−cycle.c file :
49 static bool enter_dir (FTS ∗fts, FTSENT ∗ent) {
50 ...
51 if (cycle_check (fts−>fts_cycle.state, ent−>fts_statp)) ...
52 }
53 // From the ./lib/ cycle−check.c file:
54 bool cycle_check (struct cycle_check_state ∗state, struct stat const ∗) {
55 assure (state−>magic == CC_MAGIC); // out−of−bound error
56 ...
57 }

Fig. 15. Case 1: memory error at cycle-check.c:60 in rmTSE-Revision-Case 1 (revised)

29

call rm call xfts_open

call cycle_check

call setup_dircall fts_read

Line 55

Execution starts

call enter_dir

call malloc
(fts −>fts_cycle.state = 0)
Does not call cycle_check_init

Buggy point !

Dereferencing returned NULL pointer

(while (true))

if (xx) …
if (xx) …

(never calls enter_dir)

Line 5 if (xx) …
if (xx) …

true branch

true branch

true branch

(never calls setup_dir)

false branch

Fig. 16. Execution flow of NULL-pointer dereference in Case 1

checking is applied in Line 37. If the allocation returns
NULL, the setup_dir function returns false in Line 38.
Subsequently, the fts_read function continues to check for
certain conditions and calls the enter_dir function.

The NULL pointer dereference error occurs when the al-
location in function setup_dir returns NULL to the object

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 15

1 #define OUT_OF_MEM() O (fatal, NILF, _("info"))
2 #define O(_t,_a,_f) _t((_a), 0, (_f))
3
4 void ∗ xrealloc (void ∗ptr, unsigned int size) {
5 void ∗result;
6 result = ptr ? realloc (ptr, size) : malloc (size);
7 if (result == 0)
8 OUT_OF_MEM();
9 return result;

10 }
11 void fatal (const floc ∗flocp, size_t len, ...) {
12 len += (strlen (fmt) + strlen(program) + (flocp && flocp−>filenm ?

strlen(flocp−>filenm):0)+INTSTR_LENGTH+8+strlen(stop)+1);
13 char ∗ p = get_buffer (len);
14 ...
15 die (MAKE_FAILURE);
16 }
17 static struct fmtstring {char ∗buffer; size_t size;} fmtbuf = {NULL, 0};
18 static char ∗ get_buffer (size_t need) {
19 if (need > fmtbuf.size) {
20 fmtbuf.size += need ∗ 2;
21 fmtbuf.buffer = xrealloc (fmtbuf.buffer, fmtbuf.size);
22 }
23 fmtbuf.buffer[need−1] = ’\0’; // out−of−bound error
24 return fmtbuf.buffer;
25 }

Fig. 17. Case 2 : memory error at output.c:605 in Make-4.2
TSE-Revision-Case 2

29

call xrealloc

call fatalcall OUT_OF_MEM

Execution starts call malloc
(result = 0)

Buggy point !

call get_buffer
goes to if-then branch
(need > fmtbuf.size is true)
call xrealloc

call xrealloc

call OUT_OF_MEM

call malloc
(result = 0)

…

…

call fatal call get_buffer
goes to if-else branch
(need > fmtbuf.size is false)

Line 23
Dereferencing returned NULL pointer

First time returning NULL

Second time returning NULL

Line 19

Fig. 18. Execution flow of NULL-pointer dereference in Case 2

fts−>fts_cycle.state in Line 36 and the subsequent invocation of
enter_dir in Line 27 in the function fts_read uses the
fts−>fts_cycle.state object. To be specific, the object fts−>fts_cycle

.state with NULL value is used via function cycle_check
in Line 51 and the NULL pointer is finally dereferenced in
Line 55 (reported as “out-of-bound” error). Fig. 16 shows
the execution flow of Case 1, where the arrows with the
solid line represent the calling flow and arrows with dashed
lines refer to the control flow for the error triggering. We
can see that the error happens if the object fts−>fts_cycle.state

is assigned with NULL value but is used across many
functions in multiple files. The developers have fixed the
bug by adding an if to check if setup_dir(sp) returns
true7 in the latest versions of rm.

5.2 Case 2: Consecutive NULL Pointer Returns in Make

Error details. Fig. 17 shows a memory error that occurs
when programmers lack the handling of consecutive NULL
pointer returns. Normally, a NULL pointer checking will be
conducted after the allocation of the memory. For example,
in the function xrealloc in Line 4, the return value results
of the allocation (either by invoking realloc or malloc)
was checked in Line 7. If this value equals 0, the program
will be terminated using the function OUT_OF_MEM in Line

7. https://git.savannah.gnu.org/cgit/gnulib.git/commit/?id=
f17d397771164c1b0f77fea8fb0abdc99cf4a3e1

8 as expected. The implementation of OUT_OF_MEM (Line
1) is a macro definition of the function O (Line 2) which
finally invokes function _t (i.e., function fatal presented
in Line 11). However, a memory error can happen when
the xrealloc function is called recursively through the
OUT_OF_MEM macro and its returned NULL pointer is deref-
erenced via fmtbuf.buffer.

Fig. 18 shows the execution flow of Case 2. To be specific,
the function fatal (Line 11) is invoked by the macro
OUT_OF_MEM. The fatal function first allocates a buffer
via function get_buffer (Line 13) based on the needed
length len and terminates the execution via function die.
The function get_buffer first checks whether the needed
size need is larger than the buffer size fmtbuf.size in Line 19.
The need argument is passed through function fatal and
updated in Line 12 (holds a non-zero value) and fmtbuf.size
is initially 0 (set in Line 17), so the if-then-branch in Lines 20-
21 will be executed when the get_buffer is invoked for
the first time, and the buffer fmtbuf.buffer will be updated
through another call to xrealloc. The key point is that
the function OUT_OF_MEM (invoked when the result gets a
0 when invoking realloc or malloc inside xrealloc)
does not immediately terminate the program execution, and
OUT_OF_MEM will continue to allocate another buffer via
a second call to xrealloc for printing purposes. Then,
the memory error will happen when the malloc buffer
allocation function in the second call to xrealloc returns 0
and triggers OUT_OF_MEM again: since the fmtbuf.size was
defined in the global scope and was set to double the
needed size in Line 20, the condition of if-statement in Line
19 will be false when get_buffer is called again while
the fmtbuf.buffer will still keep the original NULL. Then, the
dereferencing of the pointer fmtbuf.buffer[need-1] will lead to
the NULL-pointer dereference memory error (reported as “out-
of-bound” error) in Line 23.

Note that we reported both of the errors in Case 1 and
Case 2 to the developers and they have confirmed the issues
as true bugs [71], [72]. The developer also acknowledged the
quality of the report. For example, during the discussion of
Case 2 with developers, one developer mentioned:

“There’s a nice catch there - where, in that recursive failure,
the writing of that terminator overflows a buffer that wasn’t
actually reallocated yet.”

5.3 Can existing tools detect the errors?
Although many approaches are proposed to detect such er-
rors, it is still challenging to capture cases involving complex
control or data flows in the test program. Static analysis ap-
proaches should be able to detect them in theory. However,
after we ran three well-known static analysis-based memory
detectors, including cppcheck [73], clang static analyze [74],
and OCLint [75], on the same benchmarks8, the results
showed that none of these tools could detect the two errors.

We note that conservative static analysis techniques
should have the capability to find the errors in theory by
over-approximating all possible execution flows through
loops and if checks across many functions and multiple

8. We tried to run Frama-C and Coccinelle but they failed to detect
any of them due to the lack of supports for certain language features in
Frama-C or desired error detection patterns in Coccinelle.

https://git.savannah.gnu.org/cgit/gnulib.git/commit/?id=f17d397771164c1b0f77fea8fb0abdc99cf4a3e1
https://git.savannah.gnu.org/cgit/gnulib.git/commit/?id=f17d397771164c1b0f77fea8fb0abdc99cf4a3e1

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 16

source files. However, to reduce false positives and make
such techniques practical, they usually make certain trade-
offs between soundness and completeness in their imple-
mentations and have limited supports for path-, flow-,
context-, object-, and field-sensitive modeling of the code
[76], [77], [78], leading to the missed errors in Case 1 and
Case 2. For example, to detect the NULL pointer deference
in Case 1 in Line 55, many branching conditions need to
be analyzed (e.g., if checks at Lines 12, 15, 16, 17, 26, 33,
and 37). Also note that the code example in Fig. 15 is a
simplified version of the original code in order to illus-
trate the bug-triggering flow more clearly; the actual code
involves many more if-checks and function calls across a
few thousand lines of code in multiple files (e.g., fts.c,
fts-cycle.c, and cycle-check.c); it can be computa-
tionally very expensive to track the inter-procedural flows of
the FTS pointer across multiple source files in a path-/flow-
/context-/object-/field-sensitive way, and the static analysis
tools may have certain trade-offs in their implementations,
limiting their accuracy in modeling the program semantics
and thus missing the detection of such errors in practice.

Dynamic analysis-based tools are less likely to catch the
error as well due to the lack of concrete inputs to run the test
programs and the low possibility that the function malloc
returns NULL in a runtime environment.

For other symbolic execution-based approaches, as
aforementioned in Section 1, they are limited by the model-
ing of dynamically allocated memory objects, thus missing
the detection of two errors.

5.4 How does SYMLOC detect the errors?

Since SYMLOC supports path constraints encoded with
symbolized addresses with concretely mapped symbolic
memory operations, SYMLOC can explore deeper execution
paths and fork more states involving malloc at Line 36 in
Fig. 15 and at Line 6 in Fig. 17. Afterward, two execution
states (one holds the value of 0 and another keeps the
symbol for the allocated objects for further path exploration)
are maintained during symbolic execution. Thanks to the
nature of symbolic execution, the specific states where the
symbolic memory object contains the NULL value can easily
run through all the code and reach Line 55 in Fig. 15 or Line
23 in Fig. 17, making the successful detection of two NULL
pointer dereference issues.

In summary, SYMLOC is an automatic approach special-
ized to detect memory errors related to allocation opera-
tions, complementary to existing approaches, and a step
further to detect more complex memory errors caused by
improper pointer operations involving allocated objects.

6 DISCUSSION

6.1 Comparison with Other Existing Approaches

Many other static memory detectors can be used to detect
memory errors in the literature, but it may not be possible to
evaluate and discuss them all. Therefore, we compare and
discuss a few more memory error detectors that are most
related to SYMLOC.

Comparison with RAM [33]. RAM proposes a relo-
catable memory addressing model that supports symbolic

addresses to facilitate more flexible memory merging and
splitting and make constraint solving more efficient in sym-
bolic execution. It is possible to extend RAM for memory
error detection purposes. However, the extension will en-
counter certain difficulties to make RAM achieve the same
goal as SYMLOC. First, RAM assumes that the actual address
of a memory object should not affect the behavior of the
program and does not encode address-related constraints
into path constraints, meaning RAM is not able to explore
more paths than standard KLEE. However, such an as-
sumption is not always held in real-world programs. For
example, the case studies presented in Section 5 show the
locations of a memory object matter a lot. Therefore, some
important errors that rely on symbolic addresses might be
missed due to the limited handling of symbolic memory
addresses. Second, RAM relies on a constraint solver to
resolve symbolic memory addresses, which can be time-
consuming. Therefore, even though the errors do not in-
volve a symbolic address, RAM will spend much time
detecting certain errors. To demonstrate the advantages of
SYMLOC in the second point in terms of performance, we
ran SYMLOC and RAM on the following small piece of code
shown in Fig. 19 to confirm whether SYMLOC is prior in
terms of performance or not.

The code example simply allocates a buffer buff that iter-
atively writes a value and reads the value from 1 to 100000.
We ran this code to compare the efficiency of SYMLOC
with RAM. RAM spent 55 seconds finishing the operations
while SYMLOC only took 13 seconds. When the situation
becomes complicated, e.g., more complex path constraints
involving dynamically allocated addresses are involved, the
performance downside may be amplified. Overall, SYMLOC
could be a complementary approach to RAM and other
symbolic execution techniques, where RAM leverages more
flexible symbolic addresses to support faster constraint solv-
ing, and SYMLOC aims to facilitate a more comprehensive
exploration of pointer-related paths. Therefore, SYMLOC
could be a complementary approach to RAM for facilitating
a more comprehensive exploration of pointer-related paths
in symbolic execution.

Comparison with MEMSIGHT [57]. MEMSIGHT is an
approach that models symbolic memory addresses that
reduce the need for concretization. There are two major
differences in the memory model design between MEM-
SIGHT and SYMLOC. First, MEMSIGHT and SYMLOC target
to address different problems. MEMSIGHT addresses the
problem of how to write or read a memory object that
the pointer points to is symbolic. We recognize that this
problem is challenging to resolve and MEMSIGHT provides
a new memory modeling solution to this end. In contrast,
SYMLOC focuses on memory error detection, and our con-
cretely mapped symbolic memory model is for avoiding
unnecessary state forking when a pointer is a symbol and
continues the execution to facilitate path exploration and er-
ror detection. Second, from the implementation perspective,
although the newly designed memory model in MEMSIGHT
can have better capabilities in theory than ours, MEMSIGHT-
KLEE fails to integrate its all features into KLEE due to the
fundamental design of KLEE: KLEE utilizes Array Bit Vec-
tor (ABV) and MEMSIGHT leverages Bit Vector (BV) while

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 17

1 int main() {
2 int ∗buff = (int ∗) malloc (100000 ∗ sizeof(int)) ;
3 for (int i = 0; i < 100000; i++) {
4 buff[i] = i ; // memory write via a symbolic address
5 printf(buff[i]) ; // read via a symbolic address
6 }
7 return 0;
8 }

Fig. 19. Example compared with RAM [33]

transferring ABV to BV is practically impossible9. Limited
by the above facts, MEMSIGHT-KLEE implements a variant
of KLEE that does not alter the address modeling (i.e., it
will not explore additional execution paths even though the
symbolic addresses are used under conditions) and only
optimizes the performance of KLEE’s execution. In other
words, MEMSIGHT-KLEE inherits one of the drawbacks of
the memory model adopted by KLEE: whenever a memory
accesses a symbolic object, MEMSIGHT-KLEE will fork a
new execution state. To this end, since MEMSIGHT-KLEE
can not explore additional paths when compared with the
standard KLEE [57], MEMSIGHT-KLEE uses the speedup to
evaluate the effect on how MEMSIGHT-KLEE can improve
KLEE in terms of performance. Therefore, in this study,
SYMLOC and MEMSIGHT-KLEE are comparable only in
terms of performance.

For a fair comparison, we use the reported speedup
numbers in the paper MEMSIGHT-KLEE and run SYMLOC
with the same setting. In particular, we used a fixed number
of target instructions to be executed in both KLEE and
SYMLOC and counted the speedups based on the common
benchmarks used in MEMSIGHT-KLEE and SYMLOC. Fig. 20
presents the comparison results. We can see SYMLOC holds
comparable speedups in the first three benchmarks. In the
last two benchmarks, SYMLOC performs slower symbolic
execution than MEMSIGHT-KLEE mainly because SYMLOC
spent more time on constraint solving due to the complex
path conditions involved.

Curious readers may still be concerned about the funda-
mental limitations that prevent us from employing this sym-
bolic memory address in MEMSIGHT to reason about the
memory errors and detect similar errors as can be identified
by SYMLOC. Unfortunately, even though users choose to
run the version of MEMSIGHT-Angr (i.e., the one combining
MEMSIGHT with Angr [54]), MEMSIGHT-Angr still cannot
detect the same errors reported by SYMLOC. This is because
MEMSIGHT-Angr does not support symbolic modeling of
constraints involving pointers from the heap due to the
lack of implementation and thus loses the opportunities to
explore more execution paths when the branch conditions
involve heap pointers. In other words, users need to add
the same kind of implementation code as SYMLOC into
MEMSIGHT-Angr to support heap address modeling, such
as the symbolization of heap addresses, and circumvent the
challenges of symbolic read/write, for more comprehensive
path exploration. It is worth noting that such an imple-
mentation requires considerable engineering efforts as it

9. The authors of MEMSIGHT have explored several implementation
solutions but finally failed to get it done mainly due to the difficulties
in complex intervening inside several KLEE’s internals.

basename
dircolors factor ln od

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

Sp
ee

du
ps

MemSight-KLEE
SymLoc

Fig. 20. Speedups comparison between MEMSIGHT-KLEE and SYMLOC

involves a deep understanding of the architecture and com-
plicated details (e.g., the heap and memory management)
of Angr. Furthermore, Angr itself does not support bug
detection capabilities, leaving it to the expert users to design
and implement bug-checking conditions10,11. Thus, even if
the support of constraints involving symbolic heap pointers
were added, we still need to add extra implementations
like SYMLOC to reason about and detect the same kinds
of memory errors. We leave such an engineering-intensive
extension of MEMSIGHT for future work.

We would like to emphasize the essential differences
in the design goal/contributions between MEMSIGHT and
SYMLOC. MEMSIGHT’s principal contribution is a new
memory model for symbolic execution engines such as
KLEE and Angr to improve path exploration (involving
stack symbolic pointers), but it has no optimizations to exist-
ing symbolic execution engines in terms of other important
capabilities, e.g., read/write via symbolic heap pointers,
or reasoning about memory errors or bug detection. In
contrast, the new memory model is only a part of the con-
tributions of SYMLOC, and SYMLOC is also a new memory
error detection system that detects many memory errors,
including the ones that can be detected by existing engines
(e.g., buffer overflow errors) or others that are hard for
existing engines to detect (e.g., use-after-free errors). Due
to the different design goals and implementations, neither
MEMSIGHT-KLEE nor MEMSIGHT-Angr can detect the same
errors reported by SYMLOC, unless users add the same
implementation as SYMLOC.

Comparison with CRED [76]. CRED is a pointer analysis-
based static UAF detector that aims to address the challenge
of reasoning about the exponential number of program
paths to find bugs at a low false positive rate. However, as a
static analyzer, as mentioned in Section 5.5 of its paper [76],
CRED suffers from both false negatives and false positives.
False negatives are due to limitations on handling loops,
linked lists, and array access aliases. False positives are due
to its imprecise path reduction and imprecise points-to in-
formation for out-of-budget points-to queries. Its evaluation
on 10 real-world programs reported 85 bugs, but 47 of them
were false positives, with a false positive rate of more than
30%. However, existing studies [79], [80] show that false
positives do matter and a common industrial requirement
of false positive rate is lower than 30%. If the false positive
rate of an approach is higher than 30%, true bugs would
be lost among false ones, and developers will discard the

10. https://docs.angr.io/en/latest/faq.html#how-do-i-find-bugs-using-angr
11. https://github.com/angr/angr/issues/1536#issuecomment-487047190

https://docs.angr.io/en/latest/faq.html#how-do-i-find-bugs-using-angr
 https://github.com/angr/angr/issues/1536#issuecomment-487047190

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 18

approach for industrial uses. In contrast, SYMLOC inherits
the advantages of symbolic execution techniques and can be
more accurate. In addition, SYMLOC can also provide more
precise inputs to help trigger the detected errors, which can
facilitate the debugging and fixing of such errors.

Since CRED is not open-sourced, we have contacted the
authors of CRED multiple times and we have not received
any response yet. Therefore, we did not run CRED natively
to conduct further experimental comparison. We have con-
ducted experiments using a couple of existing static analyz-
ers (i.e., Frama-C or Coccinelle) and the JTS benchmarks,
and the results presented in Fig. 10 and Fig. 11 show that
they miss the detection of certain UAF and DoF bugs due to
limited inter-procedural analysis or error detection patterns.
For CRED, the approach only targeted UAF bug detection, it
cannot detect other types of bugs (e.g., buffer overflows) that
can be detected by SYMLOC. Even for UAF bug detection, as
mentioned by CRED authors, CRED suffers from both false
positives (due to imprecise path reduction and imprecise
points-to information for out-of-budget points-to queries)
and false negatives (due to unsound modeling of loops and
limited modeling of pointer objects and their fields and
contexts during analysis). These limitations may be due to
imprecise modeling of various aspects of program semantics
(e.g., paths, flows, contexts, objects, fields). Taking the case
shown in Fig. 15 as an example, detecting the UAF bug
may need more path-, context-, object-, and field-sensitive
program analysis, but CRED and other static analyzers have
a high possibility of missing the bug inside the function call
fts_read that is invoked with many if checks and other
function calls across multiple files. In contrast, SYMLOC,
as a dynamic symbolic execution tool, excels at providing
more precise information (e.g., the concrete test inputs) to
help debug the error once it was detected, with the result
aligning the common industrial requirement of 30% false
positive rates [79], [80].

We have also tried to fix the LLVM runtime errors,
but the code implementation required for fixing the errors
is intricate and demanding. For example, there is a list
of unsupported LLVM instructions maintained by KLEE12,
and we have encountered the unsupported instruction
“llvm.x86.sse2.packuswb.128” when running ghostscript
package. KLEE’s developers could not support it for more
than three years due to implementation difficulties; sup-
porting it requires a good amount of engineering work
based on developers’ feedback13; it is even harder for us
to change the LLVM implementation in a few months. We
also acknowledge that symbolic execution techniques have
their limitations such as path exploration, which requires
future improvements. We are actively working on combin-
ing normal and heap address symbolization to alleviate the
problem in future work.

6.2 Threats to Validity
One threat lies in the address symbolization strategy de-
signed in SYMLOC. Ideally, a test program may invoke
multiple malloc functions. When a user selects the full
symbolization option, it may produce complex constraints

12. https://github.com/klee/klee/issues/678#issue-235902374
13. https://github.com/klee/klee/issues/1154#issuecomment-531295026

that could significantly slow down the execution. Although
we did not design an extra constraint reduction solution to
such a situation, we have designed a selective option with
a new API (i.e., klee_make_malloc_symbolic) which
allows users to identify interesting allocation (e.g., those
addresses are extensively used in the comparison within
a if condition) first. Such a strategy could potentially help
release some pressure on the solver side. Another threat
comes from the test programs. We used selected utilities
in GNU Coreutils, two larger benchmarks, and JTS.
Although they have been widely used for evaluating sym-
bolic execution [13], [14], [33], [61], [62], [81] and temporal
memory error detection [3], these programs may not be
representative enough for various software systems. We are
considering expanding the program sets in our future work.

6.3 Limitations of SYMLOC

SYMLOC has an implementation limitation. Different allo-
cation functions (e.g., malloc, calloc, and realloc) are
supported in C/C++ programming languages, and SYMLOC
so far only supports the symbolization of addresses returned
by malloc. However, the malloc is the basic function used
for dynamic memory allocation in the program. We are
considering adding support for other allocation functions
into the extended version of SYMLOC. Although SYMLOC
provides more complete modeling of dynamically allocated
memory objects, due to the sophisticated mechanism of
heap management, SYMLOC still has some modeling limi-
tations. First, SYMLOC does not support symbolic offset and
symbolic size. Symbolic offset is designed in Mayhem [31]
while the symbolic size is supported in symsize [14]. We plan
to integrate them into SYMLOC. Second, when ITE involves
two different addresses, SYMLOC is not able to provide
the required addresses at run-time. We also recognize that
SYMLOC has a limitation on allocating heap buffers to the
required concrete addresses that satisfy different path con-
straints during symbolic execution. That means if SYMLOC
forks two states that contain two different addresses (e.g., 0
and 0xffff543400) separately for a symbolic pointer, SYMLOC
does not provide a new heap buffer that is located at the
concrete address 0 or 0xffff543400 for the pointer in each ex-
ecution state during symbolic execution. Instead, SYMLOC
simply uses the buffer previously allocated for the pointer
(if any) maintains the constraints for the symbolic address,
and continues the exploration of the paths. We plan to add
a heap simulator [82] in SYMLOC to simulate the run-time
behavior of the heap allocator in future work to overcome
such a limitation.

6.4 Integration with Other Techniques
It can be interesting to integrate various addressing mod-
els of RAM [33], symsize [14], and SYMLOC together into
symbolic execution. RAM’s relocatable addressing model
improves the ability of symbolic pointer resolution and
reduces the cost of solving array theory constraints with big
arrays. symsize leverages a bounded symbolic-size model
that symbolizes the size of allocated objects. SYMLOC con-
siders program behaviors and execution paths that may be
affected by memory addresses. Integrating the above three
addressing models could yield a more complete and efficient
model for symbolic execution.

https://github.com/klee/klee/issues/678#issue-235902374
https://github.com/klee/klee/issues/1154#issuecomment-531295026

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 19

7 RELATED WORK

This section describes the most related work for detecting
memory errors, including static analysis, dynamic analysis,
and symbolic execution-based approaches.

Static analysis for memory error detection. Static tools
leverage pattern matching and abstract interpretation tech-
niques to facilitate the detection of memory errors. Coc-
cinelle [10] employs a given pattern to analyze and certify
memory errors, mainly in C programs. Cppcheck [83] checks
non-standard code to detect potential memory errors. Tscan-
Code [84] extends CppCheck and detects temporal memory
errors using specific syntactic patterns. Regarding abstract
interpretation-based approaches, Frama-C [9] implements
program safety verification and uses value flow analysis to
detect memory errors. Clang static analyzer [74] performs
path-sensitive analysis to detect general memory errors.

Dynamic analysis for memory error detection. Typical
dynamic memory detectors can be classified into two types
based on their strategy of instrumentation. On run-time-
instrumentation, Valgrind [11] uses disassembly and resyn-
thesizing technology to detect memory errors. Purify [85]
utilizes object code insertion technology to instrument object
files with additional instructions. Dr. Memory [4] applies a
copy-and-annotate technique to copy the incoming instruc-
tions verbatim. On compile-time instrumentation, Mudflap
[86] statically inserts the predicate validity assertion at the
pointer deference site (i.e., the pointer’s use site) to decide
whether the pointer accesses valid memory. ASan [12] lever-
ages a direct shadow mapping scheme with compile-time
instrumentation to detect memory errors.

Symbolic execution for memory error detection. KLEE
[13] is the leading symbolic execution that can detect many
memory errors by using a concrete memory model. Re-
cently, David et al. propose symsize [14] which adopts a
bound memory model to model the size of memory allo-
cation. David et al. [33] propose a novel symbolic memory
model RAM that accesses objects with symbolic offsets
which are handled using array theory to facilitate constraint
solving in symbolic execution. Matin [87] introduces an en-
hanced, fine-grain, and efficient representation of memory
that mimics the allocations of tested applications. Coppa et
al. [57] model symbolic memory as a set of tuples, where
each tuple associates an address expression to a timestamp-
based and a condition-based value expression. Angr [54]
and Mayhem [31] share the same index-based memory
model that allows a symbolic read under certain conditions.

Unlike existing approaches, our goal is to leverage a
symbolic execution-based approach SYMLOC to facilitate the
detection of memory errors. Unlike existing static/dynamic
analysis-based memory detectors, SYMLOC not only can de-
tect more memory errors but could also provide useful test
cases for those detected errors to facilitate the debugging
and fixing processes during software development. Com-
pared with existing symbolic execution engines, we design
a new memory model with concretely mapped symbolic
memory locations and a new error-detecting mechanism to
assist in the detection of address-specific spatial memory
errors. Furthermore, SYMLOC could reliably detect temporal
memory errors with the help of the newly designed sym-
bolic memory tracing technique.

8 CONCLUSION WITH FUTURE WORK

We have presented SYMLOC using concretely mapped sym-
bolic memory locations to facilitate the detection of memory
errors. A new integration of three techniques is designed in
SYMLOC: (1) the symbolization of addresses and encoding
of the symbolic addresses into path constraints, (2) the
symbolic memory read/write operations using a symbolic-
concrete memory map, and (3) the automatic tracking of
the use of symbolic memory locations. Our evaluation re-
sults show that SYMLOC outperforms various state-of-the-
art memory detectors in terms of detecting memory errors
involving allocated memory addresses. We also discuss
some interesting errors detected by SYMLOC but missed by
other tools and their implications. We also provide a repli-
cation package (https://github.com/haoxintu/SymLoc) of
SYMLOC to facilitate further research in this area. As part of
future work, we are actively pursuing to integrate different
addressing models to support more complete, accurate,
and efficient memory modeling of program semantics for
symbolic execution.

ACKNOWLEDGMENTS

The authors would like to thank anonymous reviewers for
their insightful comments and all developers who partici-
pated in this work. This article is partially funded by the
Ministry of Education (MOE) Singapore and the Centre
for Research on Intelligent Software Engineering (RISE) at
Singapore Management University (SMU). Any opinions,
findings, conclusions, or recommendations expressed in this
article are those of the author(s) and do not reflect the views
of the MOE or SMU.

REFERENCES

[1] I. A. Astrakhantseva, R. G. Astrakhantsev, and A. V. Mitin, “Ran-
domized C/C++ dynamic memory allocator,” Journal of Physics:
Conference Series, vol. 2001, no. 1, pp. 1–6, 2021.

[2] M. Eckert, A. Bianchi, R. Wang, Y. Shoshitaishvili, C. Kruegel, and
G. Vigna, “HeapHopper: Bringing bounded model checking to
heap implementation security,” in USENIX Security Symposium,
2018, pp. 99–116.

[3] B. Gui, W. Song, H. Xiong, and J. Huang, “Automated use-after-
free detection and exploit mitigation: How far have we gone?”
IEEE Transactions on Software Engineering, vol. 48, no. 11, pp. 4569–
4589, 2022.

[4] D. Bruening and Q. Zhao, “Practical memory checking with dr.
memory,” in CGO, 2011, pp. 213–223.

[5] R. M. farkhani, M. Ahmadi, and L. Lu, “PTAuth: Temporal mem-
ory safety via robust points-to authentication,” in USENIX Security
Symposium, 2021, pp. 1037–1054.

[6] M. T. Aga and T. Austin, “Smokestack: Thwarting dop attacks with
runtime stack layout randomization,” in CGO, 2019, pp. 26–36.

[7] L. Szekeres, M. Payer, T. Wei, and D. Song, “Sok: Eternal war in
memory,” in IEEE Symposium on Security and Privacy (S&P), 2013,
pp. 48–62.

[8] CVE-2022-0667, “Assertion failure on delayed ds lookup,” 2022.
[Online]. Available: https://kb.isc.org/docs/cve-2022-0667

[9] P. Cuoq, F. Kirchner, N. Kosmatov, V. Prevosto, J. Signoles, and
B. Yakobowski, “Frama-c: A software analysis perspective,” in
Proceedings of the International Conference on Software Engineering
and Formal Methods (SEFM), 2012, pp. 233–247.

[10] M. C. Olesen, R. R. Hansen, J. L. Lawall, and N. Palix, “Coccinelle:
tool support for automated cert c secure coding standard certifica-
tion,” Science of Computer Programming, vol. 91, pp. 141–160, 2014.

[11] N. Nethercote and J. Seward, “Valgrind: A framework for heavy-
weight dynamic binary instrumentation,” in Proceedings of the
ACM SIGPLAN conference on Programming Language Design and
Implementation (PLDI), 2007, pp. 89–100.

https://github.com/haoxintu/SymLoc
https://kb.isc.org/docs/cve-2022-0667

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 20

[12] K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov, “Ad-
dresssanitizer: A fast address sanity checker,” in USENIX Annual
Technical Conference, 2012, pp. 1–28.

[13] C. Cadar, D. Dunbar, and D. Engler, “Klee: Unassisted and au-
tomatic generation of high-coverage tests for complex systems
programs,” in Proceedings of the USENIX Conference on Operating
Systems Design and Implementation (OSDI), 2008, pp. 209–224.

[14] D. Trabish, S. Itzhaky, and N. Rinetzky, “A bounded symbolic-
size model for symbolic execution,” in Proceedings of the ACM Joint
Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (ESEC/FSE), 2021, pp.
1190–1201.

[15] J. Cohen, “Contemporary automatic pro-
gram analysis,” 2022. [Online]. Available:
https://www.blackhat.com/docs/us-14/materials/
us-14-Cohen-Comtemporary-Automatic-Program-Analysis.pdf

[16] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R.
Engler, “Exe: Automatically generating inputs of death,” ACM
Transactions on Information and System Security, vol. 12, no. 2, pp.
1–38, 2008.

[17] C. S. Pasareanu, W. Visser, D. H. Bushnell, J. Geldenhuys, P. C.
Mehlitz, and N. Rungta, “Symbolic pathfinder: integrating sym-
bolic execution with model checking for java bytecode analysis,”
Automated Software Engineering, vol. 20, pp. 391–425, 2013.

[18] R. Rutledge and A. Orso, “Pg-klee: Trading soundness for cov-
erage,” in Proceedings of the ACM/IEEE International Conference on
Software Engineering (ICSE), 2020, pp. 65–68.

[19] P. Godefroid, M. Y. Levin, and D. A. Molnar, “Automated white-
box fuzz testing,” in Network and Distributed System Security Sym-
posium (NDSS), 2008, pp. 151–166.

[20] W. Jin and A. Orso, “Bugredux: Reproducing field failures for in-
house debugging,” in Proceedings of the ACM/IEEE International
Conference on Software Engineering (ICSE), 2012, pp. 474–484.

[21] C. Zamfir and G. Candea, “Execution synthesis: A technique for
automated software debugging,” in Proceedings of the European
Conference on Computer Systems (EuroCCS), 2010, pp. 321–334.

[22] S. Mechtaev, J. Yi, and A. Roychoudhury, “Angelix: Scalable multi-
line program patch synthesis via symbolic analysis,” in Proceedings
of the ACM/IEEE International Conference on Software Engineering
(ICSE), 2016, pp. 691–701.

[23] S. Mechtaev, M.-D. Nguyen, Y. Noller, L. Grunske, and A. Roy-
choudhury, “Semantic program repair using a reference imple-
mentation,” in Proceedings of the ACM/IEEE International Conference
on Software Engineering (ICSE), 2018, pp. 129–139.

[24] H. D. T. Nguyen, D. Qi, A. Roychoudhury, and S. Chandra,
“Semfix: Program repair via semantic analysis,” in Proceedings
of the ACM/IEEE International Conference on Software Engineering
(ICSE), 2013, pp. 772–781.

[25] P. Collingbourne, C. Cadar, and P. H. Kelly, “Symbolic crosscheck-
ing of floating-point and simd code,” in Proceedings of the ACM
SIGSAC Conference on Computer and Communications Security (CCS),
2011, pp. 315–328.

[26] T. Kapus, O. Ish-Shalom, S. Itzhaky, N. Rinetzky, and C. Cadar,
“Computing summaries of string loops in c for better testing
and refactoring,” in Proceedings of the ACM SIGPLAN conference
on Programming Language Design and Implementation (PLDI), 2019,
pp. 874–888.

[27] T. Brennan, S. Saha, T. Bultan, and C. S. Păsăreanu, “Symbolic path
cost analysis for side-channel detection,” in Proceedings of the ACM
SIGSOFT International Symposium on Software Testing and Analysis
(ISSTA), 2018, pp. 27–37.

[28] R. Brotzman, S. Liu, D. Zhang, G. Tan, and M. T. Kandemir,
“Casym: Cache aware symbolic execution for side channel de-
tection and mitigation,” IEEE Symposium on Security and Privacy
(S&P), pp. 505–521, 2018.

[29] S. Guo, Y. Chen, J. Yu, M. Wu, Z. Zuo, P. Li, Y. Cheng, and H. Wang,
“Exposing cache timing side-channel leaks through out-of-order
symbolic execution,” in Proceedings of the ACM on Programming
Languages, vol. 4, 2020, pp. 1–32.

[30] T. Avgerinos, S. K. Cha, A. Rebert, E. J. Schwartz, M. Woo, and
D. Brumley, “Automatic exploit generation,” Communications of the
ACM, vol. 57, no. 2, pp. 74–84, 2014.

[31] S. K. Cha, T. Avgerinos, A. Rebert, and D. Brumley, “Unleashing
mayhem on binary code,” in IEEE Symposium on Security and
Privacy (S&P), 2012, pp. 380–394.

[32] S. Heelan, T. Melham, and D. Kroening, “Gollum: Modular and
greybox exploit generation for heap overflows in interpreters,”

in Proceedings of the ACM SIGSAC Conference on Computer and
Communications Security (CCS), 2019, pp. 1689–1706.

[33] D. Trabish and N. Rinetzky, “Relocatable addressing model for
symbolic execution,” in Proceedings of the ACM SIGSOFT Interna-
tional Symposium on Software Testing and Analysis (ISSTA), 2020, pp.
51–62.

[34] N. C. for Assured Software, “Juliet test suite 1.3,” 2017. [Online].
Available: https://samate.nist.gov/SRD/testsuite.php/

[35] S. Nagarakatte, J. Zhao, M. M. Martin, and S. Zdancewic, “Soft-
bound: Highly compatible and complete spatial memory safety for
c,” in Proceedings of the ACM SIGPLAN conference on Programming
Language Design and Implementation (PLDI), 2009, pp. 245–258.

[36] N. S. Z. J. M. M. M.K. and S. Zdancewic, “CETS: compiler enforced
temporal safety for c,” in Proceedings of the International Symposium
on Memory Management (ISMM), 2010, pp. 31–40.

[37] Z. Chen, C. Wang, J. Yan, Y. Sui, and J. Xue, “Runtime detection
of memory errors with smart status,” in Proceedings of the ACM
SIGSOFT International Symposium on Software Testing and Analysis
(ISSTA), 2021, pp. 296–308.

[38] W. Wu, Y. Chen, J. Xu, X. Xing, X. Gong, and W. Zou, “FUZE:
Towards facilitating exploit generation for kernel Use-After-Free
vulnerabilities,” in USENIX Security Symposium, 2018, pp. 781–797.

[39] M. safety in the Chromium project, 2020. [Online]. Avail-
able: https://www.chromium.org/Home/chromium-security/
memory-safety/

[40] “Implementation of memmove in Apple
Open Source,” 2022. [Online]. Available:
https://opensource.apple.com/source/network_cmds/network_
cmds-481.20.1/unbound/compat/memmove.c.auto.html

[41] “Implementation of memmove in Glibc,” 2022. [On-
line]. Available: https://github.com/lattera/glibc/blob/master/
string/memmove.c

[42] R. Gopinath, C. Jensen, and A. Groce, “Code coverage for suite
evaluation by developers,” in Proceedings of the ACM/IEEE Interna-
tional Conference on Software Engineering (ICSE), 2014, pp. 72–82.

[43] P. Ammann and J. Offutt, Introduction to software testing. Cam-
bridge University Press, 2016.

[44] B. Dolan-Gavitt, “KLEE may miss use-after-free in call to Libc
function,” 2022. [Online]. Available: https://github.com/klee/
klee/issues/1434

[45] A. Sotirov, “Heap feng shui in javascript,” 2007. [Online].
Available: https://llvm.org/docs/LangRef.html#introduction

[46] Y. Wang, C. Zhang, Z. Zhao, B. Zhang, X. Gong, and W. Zou,
“MAZE: Towards automated heap feng shui,” in USENIX Security
Symposium, 2021, pp. 1647–1664.

[47] S. Heelan, T. Melham, and D. Kroening, “Automatic heap layout
manipulation for exploitation,” in USENIX Security Symposium,
2018, pp. 763–779.

[48] Y. Chen and X. Xing, “Slake: Facilitating slab manipulation for
exploiting vulnerabilities in the linux kernel,” in Proceedings of the
ACM SIGSAC Conference on Computer and Communications Security
(CCS), 2019, pp. 1707–1722.

[49] STP, “Simple theorem prover, an efficient smt solver for
bitvectors,” 2022. [Online]. Available: https://github.com/stp/stp

[50] Z3, “A theorem prover from microsoft research,” 2022. [Online].
Available: https://github.com/z3prover/z3

[51] Apple, “Tips for Allocating Memory,” 2023. [Online]. Available:
https://developer.apple.com/library/archive/documentation/
Performance/Conceptual/ManagingMemory/Articles/
MemoryAlloc.html#//apple_ref/doc/uid/20001881-CJBCFDGA

[52] I. Yun, D. Kapil, and T. Kim, “Automatic techniques to system-
atically discover new heap exploitation primitives,” in USENIX
Security Symposium, 2020, pp. 1111–1128.

[53] T. Kapus and C. Cadar, “A segmented memory model for symbolic
execution,” in Proceedings of the ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of
Software Engineering (ESEC/FSE), 2019, pp. 774–784.

[54] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino,
A. Dutcher, J. Grosen, S. Feng, C. Hauser, C. Kruegel, and G. Vigna,
“Sok: (state of) the art of war: Offensive techniques in binary
analysis,” in IEEE Symposium on Security and Privacy (S&P), 2016,
pp. 138–157.

[55] R. Baldoni, E. Coppa, D. C. D’elia, C. Demetrescu, and I. Finocchi,
“A survey of symbolic execution techniques,” ACM Computing
Survey, vol. 51, no. 3, pp. 1–39, 2018.

[56] V. Chipounov, V. Kuznetsov, and G. Candea, “S2e: A platform for
in-vivo multi-path analysis of software systems,” SIGPLAN Not.,
vol. 46, no. 3, pp. 265–278, 2011.

https://www.blackhat.com/docs/us-14/materials/us-14-Cohen-Comtemporary-Automatic-Program-Analysis.pdf
https://www.blackhat.com/docs/us-14/materials/us-14-Cohen-Comtemporary-Automatic-Program-Analysis.pdf
https://samate.nist.gov/SRD/testsuite.php/
https://www.chromium.org/Home/chromium-security/memory-safety/
https://www.chromium.org/Home/chromium-security/memory-safety/
https://opensource.apple.com/source/network_cmds/network_cmds-481.20.1/unbound/compat/memmove.c.auto.html
https://opensource.apple.com/source/network_cmds/network_cmds-481.20.1/unbound/compat/memmove.c.auto.html
https://github.com/lattera/glibc/blob/master/string/memmove.c
https://github.com/lattera/glibc/blob/master/string/memmove.c
https://github.com/klee/klee/issues/1434
https://github.com/klee/klee/issues/1434
https://llvm.org/docs/LangRef.html#introduction
https://github.com/stp/stp
https://github.com/z3prover/z3
https://developer.apple.com/library/archive/documentation/Performance/Conceptual/ManagingMemory/Articles/MemoryAlloc.html#//apple_ref/doc/uid/20001881-CJBCFDGA
https://developer.apple.com/library/archive/documentation/Performance/Conceptual/ManagingMemory/Articles/MemoryAlloc.html#//apple_ref/doc/uid/20001881-CJBCFDGA
https://developer.apple.com/library/archive/documentation/Performance/Conceptual/ManagingMemory/Articles/MemoryAlloc.html#//apple_ref/doc/uid/20001881-CJBCFDGA

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 21

[57] E. Coppa, D. C. D’Elia, and C. Demetrescu, “Rethinking pointer
reasoning in symbolic execution,” in Proceedings of the IEEE/ACM
International Conference on Automated Software Engineering (ASE),
2017, pp. 613–618.

[58] B. Farinier, R. David, S. Bardin, and M. Lemerre, “Arrays made
simpler: An efficient, scalable and thorough preprocessing,” in
Proceedings of International Conference on Logic for Programming,
Artificial Intelligence and Reasoning (LPAR), vol. 57, 2018, pp. 363–
380.

[59] G. make, “A building automation tool,” 2022. [Online]. Available:
https://www.gnu.org/software/make

[60] G. m4, “A traditional unix macro processor,” 2022. [Online].
Available: https://www.gnu.org/software/m4

[61] J. He, G. Sivanrupan, P. Tsankov, and M. Vechev, “Learning to
explore paths for symbolic execution,” in Proceedings of the ACM
SIGSAC Conference on Computer and Communications Security (CCS),
2021, pp. 2526–2540.

[62] Y. Li, Z. Su, L. Wang, and X. Li, “Steering symbolic execution to
less traveled paths,” SIGPLAN Notice, vol. 48, no. 10, pp. 19–32,
2013.

[63] GCOV, “A test coverage program in gnu gcc tool-chain,” 2022.
[Online]. Available: https://gcc.gnu.org/onlinedocs/gcc/Gcov.
html

[64] L. IR, “A powerful intermediate representation for efficient
compiler transformations and analysis,” 2022. [Online]. Available:
https://llvm.org/docs/LangRef.html#introduction

[65] C. Cadar and T. Kapus, “Measuring the cov-
erage achieved by symbolic execution,” 2022.
[Online]. Available: http://ccadar.blogspot.com/2020/07/
measuring-coverage-achieved-by-symbolic.html

[66] S. Cha, M. Lee, S. Lee, and H. Oh, “Symtuner: Maximizing the
power of symbolic execution by adaptively tuning external pa-
rameters,” in Proceedings of the ACM/IEEE International Conference
on Software Engineering (ICSE), 2022, pp. 2068–2079.

[67] V. D’Silva, M. Payer, and D. Song, “The correctness-security gap in
compiler optimization,” in IEEE Symposium on Security and Privacy
(S&P), 2015, pp. 73–87.

[68] X. Yang, Y. Chen, E. Eide, and J. Regehr, “Finding and understand-
ing bugs in c compilers,” in Proceedings of the ACM SIGPLAN con-
ference on Programming Language Design and Implementation (PLDI),
2011, pp. 283––294.

[69] V. D’Silva, M. Payer, and D. Song, “The correctness-security gap in
compiler optimization,” in IEEE Symposium on Security and Privacy
Workshops, 2015, pp. 73–87.

[70] K. Dudka, “Missing a double free when heap pointers
are compared,” 2022. [Online]. Available: https://github.com/
staticafi/symbiotic/issues/89

[71] G. Developer. (2024) Confirmation of the bug in Case 1. [Online].
Available: https://debbugs.gnu.org/cgi/bugreport.cgi?%20msg=
10;bug=65269#10

[72] D. of make package. (2024) Confirmation of the bug in Case
2. [Online]. Available: https://github.com/haoxintu/SymLoc/
blob/main/experiments/confirmation-case2.pdf

[73] Cppcheck, “A tool for static c/c++ code analysis.” 2023. [Online].
Available: http://cppcheck.sourceforge.net/

[74] C. S. Analyzer, “A source code analysis tool that finds bugs
in c, c++, and objective-c program,” 2023. [Online]. Available:
http://clang-analyzer.llvm.org

[75] Oclint, “A static code analysis tool for improving quality and
reducing defects,” 2023. [Online]. Available: https://oclint.org

[76] H. Yan, Y. Sui, S. Chen, and J. Xue, “Spatio-temporal context
reduction: A pointer-analysis-based static approach for detecting
use-after-free vulnerabilities,” in Proceedings of the ACM/IEEE In-
ternational Conference on Software Engineering (ICSE), 2018, pp. 327–
337.

[77] W. Griswold, D. Atkinson, and C. McCurdy, “Fast, flexible syn-
tactic pattern matching and processing,” in Proceedings of 4th
Workshop on Program Comprehension, 1996, pp. 144–153.

[78] G. J. Badros and D. Notkin, “A framework for preprocessor-aware
c source code analyses,” Software: Practice and Experience, vol. 30,
no. 8, pp. 907–924, 2000.

[79] A. Bessey, K. Block, B. Chelf, A. Chou, B. Fulton, S. Hallem,
C. Henri-Gros, A. Kamsky, S. McPeak, and D. Engler, “A few
billion lines of code later: Using static analysis to find bugs in the
real world,” Communications of the ACM, vol. 53, no. 2, p. 66–75,
2010.

[80] S. McPeak, C.-H. Gros, and M. K. Ramanathan, “Scalable and in-
cremental software bug detection,” in Proceedings of the ACM Joint
Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (ESEC/FSE), 2013, pp.
554–564.

[81] A. Pandey, P. R. G. Kotcharlakota, and S. Roy, “Deferred con-
cretization in symbolic execution via fuzzing,” in Proceedings of
the ACM SIGSOFT International Symposium on Software Testing and
Analysis (ISSTA), 2019, pp. 228–238.

[82] R. Li, B. Zhang, J. Chen, W. Lin, C. Feng, and C. Tang, “Towards
automatic and precise heap layout manipulation for general-
purpose programs.” in Network and Distributed System Security
Symposium (NDSS), 2023, pp. 1–15.

[83] D. Marjamäki, “Cppcheck: a tool for static C/C++ code analysis,”
2023. [Online]. Available: https://cppcheck.sourceforge.io/

[84] Tencent, “A fast and accurate static analysis solution for
C/C++, C#, Lua codes,” 2023. [Online]. Available: https:
//github.com/Tencent/TscanCode

[85] R. Hastings, “Purify: Fast detection of memory leaks and access
errors,” in Proceedings of the USENIX Winter’92 Conference, 1992,
pp. 125–136.

[86] F. C. Eigler, “Mudflap: Pointer use checking for c/c+,” in Proceed-
ings of the First Annual GCC Developers’ Summit. Citeseer, 2003,
pp. 57–70.

[87] M. Nowack, “Fine-grain memory object representation in sym-
bolic execution,” in Proceedings of the IEEE/ACM International Con-
ference on Automated Software Engineering (ASE), 2019, pp. 912–923.

[88] “Building secure software: better than protecting bad software,”
IEEE Software, vol. 19, no. 6, pp. 57–58, 2002.

[89] G. McGraw, “Software security,” IEEE Symposium on Security and
Privacy (S&P), vol. 2, no. 2, pp. 80–83, 2004.

[90] J. Viega and G. R. McGraw, Building secure software: how to avoid
security problems the right way. Pearson Education, 2001.

[91] S. Developer. (2024) SQL Injection Prevention Cheat
Sheet. [Online]. Available: https://cheatsheetseries.owasp.org/
cheatsheets/SQL_Injection_Prevention_Cheat_Sheet.html

[92] C. Cowan, C. Pu, D. Maier, J. Walpole, P. Bakke, S. Beattie, A. Grier,
P. Wagle, Q. Zhang, and H. Hinton, “Stackguard: automatic
adaptive detection and prevention of buffer-overflow attacks.” in
USENIX Security Symposium, vol. 98, 1998, pp. 63–78.

[93] T. Kapus and C. Cadar, “Automatic testing of symbolic execution
engines via program generation and differential testing,” in 2017
32nd IEEE/ACM International Conference on Automated Software
Engineering (ASE), 2017, pp. 590–600.

https://www.gnu.org/software/make
https://www.gnu.org/software/m4
https://gcc.gnu.org/onlinedocs/gcc/Gcov.html
https://gcc.gnu.org/onlinedocs/gcc/Gcov.html
https://llvm.org/docs/LangRef.html#introduction
http://ccadar.blogspot.com/2020/07/measuring-coverage-achieved-by-symbolic.html
http://ccadar.blogspot.com/2020/07/measuring-coverage-achieved-by-symbolic.html
https://github.com/staticafi/symbiotic/issues/89
https://github.com/staticafi/symbiotic/issues/89
https://debbugs.gnu.org/cgi/bugreport.cgi?%20msg=10;bug=65269#10
https://debbugs.gnu.org/cgi/bugreport.cgi?%20msg=10;bug=65269#10
https://github.com/haoxintu/SymLoc/blob/main/experiments/confirmation-case2.pdf
https://github.com/haoxintu/SymLoc/blob/main/experiments/confirmation-case2.pdf
http://cppcheck.sourceforge.net/
http://clang-analyzer.llvm.org
https://oclint.org
https://cppcheck.sourceforge.io/
https://github.com/Tencent/TscanCode
https://github.com/Tencent/TscanCode
https://cheatsheetseries.owasp.org/cheatsheets/SQL_Injection_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/SQL_Injection_Prevention_Cheat_Sheet.html

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 22

APPENDIX A
SUPPLEMENTARY CASES STUDIES

A.1 Case 3: Return Malloc Address from Stack in Make

Address-specific memory errors, i.e., those that happen
when the memory objects were allocated at a specific lo-
cation (not NULL), are rarely considered in the commu-
nity. The following is a case involving potentially improper
pointer comparison between two different types of objects,
i.e., one from the stack and another from the heap.
Error details. Fig. 21 illustrates a code example showing the
memory error in the address from dynamically allocated
memory returned from a stack object. Since the execution
flow of this error is quite complicated, to clearly explain
the root cause, we first describe the functionality of the key
functions involved in the error triggering and then articulate
the execution flow to trigger the error.

The function construct_include_path (Line 1),
which is directly invoked by the main function in
Make-4.2 program, constructs the list of included direc-
tories from the arguments and the default list. The function
do_variable_definition (Line 9), called in the for-loop,
defines a variable by giving a variable name, a value, and
a flavor. The function lookup_variable (Line 23) aims to
lookup a variable whose name matches the name and the
len, and returns the address of the ”struct variable” or 0 if
no such variable is defined. The function hash_find_item
(Line 32) finds an item based on the provided key. The
function define_variable_in_set (Line 36) defines a
variable with the name and value in a global variable set:
it finds the variable in the hash table first in Line 40 and
allocates a new one via xmalloc in Line 44 and inserts the
object into the hash table via the function hash_insert_at
in Line 45. The function hash_find_slot (Line 49) is the
place where the root cause lies. Inside this function, it first
gets the hash value hash_1 by looking up the provided key,
and then a for-loop is applied to search the slot that matches
the value of hash_1. The error happens when the value of
key equals the value of *slot and the object associated with
the address of the key is dereferenced later in Line 17.

Fig. 22 further describes the detailed execution flow of
the memory error triggering. The error occurs in the second
iteration in the while-loop in Line 4. In the first iteration, since
the variable to be looked up is not defined, the value of
v returned by function lookup_variable in Line 12 is 0
and the new variable is stored into the hash table through
function define_variable_in_set. When the second
iteration starts, if the address of the variable key equals
the allocated address v in the first iteration, the function
hash_find_slot returns the address value of *slot, where
the value equals the value of the key. Note that although
the address of the dereferenced pointer equals the address
as allocated before, the memory region after the pointer
v->value points to can be modified through the following
allocation operation (e.g., the allocation via the function
xstrdup in Line 45). Once this happens, every memory
cell, possibly including the hash table storing the value of v,
can be overwritten. Finally, the address v can be an invalid
memory address and dereferencing v->recursive leading to
the memory error in Line 17.

Note that the address stored in the hash cell (e.g., *slot at
Line 57) is a heap address (as it was allocated from the heap

via malloc) function in most of the cases when the heap
allocator behaves well. However, many existing studies [2],
[46] shows that the heap allocator can contain defects that
make the heap allocator behave abnormally. Therefore, if
the heap allocator contains any errors (this is possible as
detecting all bugs in heap allocators is undecidable), it is
likely that the address stored in the hash cell (e.g., *slot at
line 57) is a stack address instead of a heap address. Second,
we also understand that Line 57 is simply a shortcut to
accelerate the hash key comparison during execution, but
the comparison expression in Line 57 only compares the
actual value between two pointers and it is hard to conclude

1 void construct_include_path (const char ∗∗arg_dirs){
2 ...
3 dirs[idx] = 0; // idx = 3
4 for (cpp = dirs; ∗cpp != 0; ++cpp) //add dirs to . INCLUDE_DIRS
5 do_variable_definition (NILF, ".INCLUDE_DIRS", ∗cpp,
6 o_default, f_append, 0);
7 ...
8 }
9 struct variable ∗ do_variable_definition (const floc ∗flocp,

10 const char ∗varname, const char ∗value, ...) {
11 ...
12 v = lookup_variable (varname, strlen (varname));
13 if (v == 0) { // first iteration
14 ...
15 } else { // Paste the old and new values together in VALUE
16 ...
17 if (v−>recursive) // buggy point (out of bound error)
18 ...
19 }
20 v = define_variable_in_set (varname, strlen (varname), p, ...) ;
21 ...
22 }
23 struct variable ∗ lookup_variable (const char ∗name, int len) {
24 struct variable var_key;
25 var_key.name = (char ∗) name; var_key.length = len;
26 ...
27 const struct variable_set ∗set = current_variable_set_list−>set;
28 v = (struct variable ∗) hash_find_item (&set−>table, &var_key);
29 ...
30 return v;
31 }
32 void ∗ hash_find_item (struct hash_table ∗ht, const void ∗key){
33 void ∗∗slot = hash_find_slot (ht, key);
34 return ((HASH_VACANT (∗slot)) ? 0 : ∗slot);
35 }
36 struct variable ∗ define_variable_in_set (const char ∗name,
37 unsigned int length, const char ∗value, ...) {
38 struct variable ∗v, ∗∗var_slot, var_key;
39 var_key.name = (char ∗) name; var_key.length = length;
40 var_slot = (variable ∗∗) hash_find_slot (&set−>table, &var_key);
41 v = ∗var_slot;
42 ...
43 if (! HASH_VACANT(v)) { ... ; return v;}
44 v = xmalloc (sizeof (struct variable)) ; // symbolic object
45 v−>value = xstrdup (value);
46 hash_insert_at (&set−>table, v, var_slot); // also assign v to var_slot
47 ...
48 }
49 void ∗∗ hash_find_slot (struct hash_table ∗ht, const void ∗key){
50 void ∗∗slot; unsigned int hash_1 = (∗ht−>ht_hash_1) (key);
51 for (;;) {
52 hash_1 &= (ht−>ht_size − 1);
53 slot = &ht−>ht_vec[hash_1]; // find target address mapping to ‘key’
54 if (∗slot == 0)
55 return (deleted_slot ? deleted_slot : slot) ; // first iteration
56 else {
57 if (key == ∗slot) // constraints leading to the error
58 return slot ; // problematic return
59 if ((∗ht−>ht_compare) (key, ∗slot) == 0)
60 return slot ;
61 }
62
63 }
64 }

Fig. 21. Case 3: memory error at variable.c:1244 in Make-4.2

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 23

TSE-Revision-updates (20230713)

26

call lookup_variable call hash_find_item

call xmalloc (v is a symbolic value now)

call define_variable_in_set call hash_find_slot

v = 0

call hash_find_slot

*slot = 0

*slot = 0

Line 55

Line 55

*slot = v // *slot is a symbolic value now

Line 58

v->recursive Buggy point ! Line 17

call hash_find_item

v = 0x555555784d000

call hash_find_slot

*slot = key

1!" iteration starts

1!" iteration ends

2#$ iteration starts

(value of key instead of *slot)

call hash_insert_at

call lookup_variable

(for-loop in Line 5)

Fig. 22. Execution flow of the out-of-bound error in Case 3

that the pointers must point to the heap. Again, if heap
allocators make mistakes, although not common (but they
do [46], [47]), the “key” could be from the stack and Line
57 could be true in an abnormal run without programmers
realizing it.
Can existing tools detect it? To the best of our knowledge,
SYMLOC may be the first in the community to detect the po-
tentially improper pointer comparison between an address
from the stack and another address from the heap. Due
to incomplete modeling of dynamically allocated memory
objects in their implementations, existing tools failed to
detect the error in our experiments although they could
theoretically detect it too with more conservative modeling.
How does SYMLOC detect it? Similar to the two cases
presented in Section 5, SYMLOC models the address of v
as a symbol in Line 44 and it is assigned the var_slot in Line
46. When encountering the if-branch in Line 57, SYMLOC
forks the states and there will be different execution states:
one key holds the value of *slot and the other key does not
hold the value of *slot. The value of key in the former state
should be equal to the original value stored in *slot (i.e.,
from the heap), but in SymLoc’s subsequent execution, it
does not (i.e., it changed to a stack address after forking).
Therefore, Line 58 will be taken. Since the value of key does
not equal the value of the original value stored in the *slot,
the returned address of v is an invalid memory address,
leading to the error when dereferenced by v->recursive.
Implications. Returning a dynamically allocated memory
address to be in the stack can be a disaster. It may cause
severe problems such as follows: (1) data corruption: the
program will overwrite the region whatever is on the stack
at that position; (2) security vulnerabilities: overwriting the
stack can introduce vulnerabilities. For example, attackers
can exploit stack-based buffer overflows to run arbitrary
code; (3) unpredictable behavior: because of the tight cou-
pling between the function call mechanism and the stack
(return addresses, local variables, etc.), corrupting the stack
can lead to unpredictable behavior, including unexpected
function calls or wrong return values; (4) memory leaks: if
users mistakenly think they are dealing with heap memory
and try to free a pointer that’s actually on the stack, the
behavior is undefined. This could lead to further corruption
of the heap’s metadata structures; (5) difficult debugging:
Such memory issues can be incredibly tricky to debug, as the
malfunction might manifest long after the actual corruption
in a completely unrelated part of the code.

In the literature, there are two approaches for manipu-
lating the heap allocator to help users get the desired heap
layout for the error triggering (1): heap fengshui [45], [46],
[47]; (2) heap exploitation techniques. It is challenging to
manipulate the heap allocator using heap fengshui [46], [47].
For heap exploitation techniques, as reported and collected
in an online repository14, the successful manipulation of
the heap allocators can happen in the off-the-shelf heap
allocator in widely used Linux systems (e.g., Ubuntu 18.04).

We also seek the developer’s suggestion of Make on
whether the issue reported in Fig. 21 is a potential issue
or not: the following is the feedback from the developer15:

“I don’t suspect GNU Make is used in that general way, as
an application language for the writing program which is
itself trustworthy and trusted, but falls victim to malicious
data which, through that program, attacks GNU Make.”
Based on the feedback from developers, it is not consid-

ered as a bug in Make, but might be misused if users write
a client program to trigger the issue reported in Fig. 21. We
note that it may not be clear-cut who (users or developers
of Make or the heap allocator used) should take responsi-
bility for the potential misbehavior in this case. When users
write their client programs using Make along with the heap
allocator, their assumptions of the heap allocator behaviors
can be different from and even in conflict with those of the
developers of Make. One may argue that users should take
responsibility as they break the underlying assumptions of
Make or the heap allocator, while one may also argue that
the developers of Make or the heap allocator should be
responsible for providing a protection mechanism or extra
checking to avoid any misuse by users that may violate their
implicit assumptions.

Regarding responsibility for preventing potential at-
tacks, as known in the literature [88], [89], [90], there are
mainly two directions, namely application security and
software security. It is worth noting that the two protect
software differently by either filtering its input in a post
facto way (application security) or by designing software
to withstand attacks in the first place (software security)
are of similar importance [88]. Users of the software may
take responsibility for ensuring application security, while
the developers of the software may take responsibility for
maintaining software security.

Taking the well-known SQL injection attacks and C stack
overflow bugs as examples, from the application security
perspective, the SQL query engines and C compilers are not
directly responsible for the vulnerable programs that use
the engines and compilers. But from the software security
perspective, the developers of SQL engine and C compiler
can take some responsibility for preventing such attacks.
For example, SQL engines support and encourage users
to adopt prepared statements with parameterized queries
[91] that automatically handle user inputs safely, which
has been instrumental in preventing SQL injection attacks;
StackGuard [92] was introduced as a compiler extension
(i.e., GCC16 and LLVM17) to significantly mitigate the risk

14. https://github.com/shellphish/how2heap
15. https://lists.gnu.org/archive/html/help-make/2023-08/msg00001.html
16. https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
17. https://llvm.org/docs/LangRef.html-llvm-stackprotector-intrinsic

https://github.com/shellphish/how2heap
https://lists.gnu.org/archive/html/help-make/2023-08/msg00001.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://llvm.org/docs/LangRef.html-llvm-stackprotector-intrinsic

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 24

of buffer overflow attacks against malicious C programs.
While reporting the error with the assumption that user

client programs could manipulate the heap allocator would
lead to more false positives (which may be considered as a
disadvantage of SYMLOC), this case illustrates the capability
of SYMLOC to consider the relations among client programs,
the subject software, and the underlying heap allocators
more comprehensive, pointing to the need of more precise
modeling and analysis of the assumptions and semantics of
the software in future work.

A.2 Case 4: Missing Forking Issue in KLEE
In this case, we discuss an issue in LLVM/KLEE that was
found by our analysis based on our experimental results.
Since KLEE is a notable and widely-used symbolic execution
tool (as of April 2024, the KLEE [13] paper has been cited
more than 4,000 times and KLEE’s repository has more than
2,400 stars), we believe the quality of KLEE itself matters a
lot when it is used for many applications.
Error details. To help make the behavior simple and easy
to understand, we make minor changes to the source code
of several source files of the dircolors package18 and
present the minimized code example in Fig. 23. The overall
logic of this issue is straightforward. The main function in
Line 17 invokes an allocation function ximalloc (a packed
function of malloc) to allocate a memory buffer p1 and free
the buffer later. Inside the function ximalloc, a buffer is
returned by calling function nonnull. The main function-
ality of the function nonnull is to ensure the returned value
by dynamically allocated memory objects is not NULL, so it
either returns a non-null value from if-then branch in Line 12
or directly exits from if-then branch in Line 9. The parameter
of the function is a memory object returned by function
imalloc, where a p2 is pointing to an object allocated by
malloc function and the p2 is returned if the allocation size
is less than the maximum size. Ideally, the pointer value
of p1 should never be NULL as the dynamically allocated
buffer is carefully checked via function nonnull.

18. For more modified file details, please refer to https://gist.github.
com/haoxintu/183dda2923965d1e33f64ad59c7f5338#prepare-the-code.

A user/developer may want to utilize a symbolic pointer
to analyze the function ximalloc and they may assume the
symbolic execution engine used should be reliable. How-
ever, using some version of KLEE to analyze this function
produces wrong results, i.e., missing a path that should be
explored, and the constraint of the pointer is not collected.
The buggy behavior is that KLEE fails to fork at a branch
that should be forked with the option “–optimize” option
enabled (i.e., “–optimize=true”). While the “–optimize” op-
tion is disabled (i.e., “–optimize=false”), the branch can be
successfully forked as usual19 We also checked the internal
constraint queries (i.e., .kquery files) produced by KLEE,
and the result shows the symbolic variables are correctly
stored. However, KLEE does not fork when the option “–
optimize=true” and no symbolic variables remain in the
.kquery files20. After the communication and confirmation
with KLEE’s developers, they confirmed this is an odd
behavior in KLEE and suggested that this specific issue
probably stems from an LLVM bug21.

1 void∗ imalloc (unsigned int s) {
2 void ∗p2 = malloc(s);
3 klee_make_symbolic(&p2, sizeof(void ∗), "sym_test"); // inserted
4 return s <= size_max ? p2 : _gl_alloc_nomem ();
5 }
6 static void∗ nonnull (void ∗p) {
7 if (! p){
8 printf("if branch in nonnull\n");
9 xalloc_die () ;

10 } else
11 printf("else branch in nonnull\n");
12 return p;
13 }
14 void∗ ximalloc (unsigned int s) {
15 return nonnull (imalloc (s));
16 }
17 int main () {
18 char∗ p1 = (char ∗) ximalloc(1);
19 free(p1);
20 return 0;
21 }

Fig. 23. Example code in dircolors package triggering different be-
havior of KLEE when the “–optimize=true/false” option enabled

How does SYMLOC detect it? SYMLOC exposed this error of
LLVM/KLEE mainly because of its uses of address symbol-
ization along with their encoding into path constraints and
the symbolic-concrete memory map. In this case, SYMLOC
would symbolize the dynamically allocated memory object
(p2 at Line 2 in Fig. 23) and encode it to path constraints
to have better modeling of the program semantics, which
would require appropriate supports of address symboliza-
tion and practical symbolic memory operations in the un-
derlying symbolic execution. However, the engine produced
the wrong results, i.e., forking at a branch that should not
be forked due to the issue of the missing constraint of the
symbolized address, which led us to identify the issue in
LLVM/KLEE when manually analyzing the results.
Implications. Through this case, we also learned two
lessons. First, when using software symbolic execution and
testing tools (e.g., KLEE), it would be better to use stable
versions and the recommended building toolchains (e.g.,
compilers) to have more reliable results. Second, although
a variety of work is dedicated to improving the capabilities
of such tools for bug detection, only a few focus on assuring
the quality of such tools themselves [93]. SYMLOC may
indirectly help to improve the capabilities and quality of
symbolic execution engines as it requires more compre-
hensive support of address symbolization and encoding.
Thus, we call for more future research work on improving
the capabilities and quality of symbolic execution engines,
e.g., by studying how compiler optimizations affect the
correctness of symbolic execution.

19. For more detailed execution results, please refer to https://gist.
github.com/haoxintu/183dda2923965d1e33f64ad59c7f5338#run-klee.

20. We also checked other benchmarks used in the evaluation, and
the results show only dircolors invokes the function ximalloc.
Therefore, the results of running other benchmarks are not affected by
this optimization issue.

21. https://www.mail-archive.com/klee-dev@imperial.ac.uk/
msg03276.html

https://gist.github.com/haoxintu/183dda2923965d1e33f64ad59c7f5338#prepare-the-code
https://gist.github.com/haoxintu/183dda2923965d1e33f64ad59c7f5338#prepare-the-code
https://gist.github.com/haoxintu/183dda2923965d1e33f64ad59c7f5338#run-klee
https://gist.github.com/haoxintu/183dda2923965d1e33f64ad59c7f5338#run-klee
https://www.mail-archive.com/klee-dev@imperial.ac.uk/msg03276.html
https://www.mail-archive.com/klee-dev@imperial.ac.uk/msg03276.html

	Introduction
	Motivation
	Common Memory Errors
	Motivating Examples
	E1: Missing Spatial Memory Errors
	E2: Missing Temporal Memory Errors

	Design of SymLoc
	Address Symbolization
	Definition of Symbolic Addressing Model
	Relaxed Non-overlapping Property

	Symbolic Memory Operations and Tracking
	Symbolic Memory Operations
	Symbolic Memory Tracking

	Implementation of SymLoc

	Evaluation
	Answers to RQ1
	Experimental Settings
	Results

	Answers to RQ2
	Experimental Settings
	Results

	Case Stduies
	Case 1: Single NULL Pointer Dereference in rm
	Case 2: Consecutive NULL Pointer Returns in Make
	Can existing tools detect the errors?
	How does SymLoc detect the errors?

	Discussion
	Comparison with Other Existing Approaches
	Threats to Validity
	Limitations of SymLoc
	Integration with Other Techniques

	Related work
	Conclusion with Future Work
	References
	Appendix A: Supplementary Cases Studies
	Case 3: Return Malloc Address from Stack in Make
	Case 4: Missing Forking Issue in KLEE

