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Naval Postgraduate School 

Monterey, California 

Abstract 
A technique is presented for global analysis of program structure in order to perform compile time 

optimization of object code generated for expressions. The global expression optimization presented 
includes constant propagation, common subexpression elimination, elimination of redundant register load 
operations, and live expression analysis. A general purpose program flow analysis algorithm is developed 
which depends upon the existence of an "optimizing function." The algorithm is defined formally using a 
directed graph model of program flow structure, and is shown to be correct, Several optimizing functions 
are defined which, when used in conjunction with the flow analysis algorithm, provide the various forms of 
code optimization. The flow analysis algorithm is sufficiently general that additional functions can easily 
be defined for other forms of global code optimization. 

1. INTRODUCTION 
A number of techniques have evolved for the 

compile-time analysis of program structure in order 
to locate redundant computations, perform constant 
computations, and reduce the number of store-load 
sequences between memory and high-speed registers. 
Some of these techniques provide analysis of only 
straight-line sequences of instructions [5,6,9,14, 
17,18,19,20,27,29,34,36,38,39,43,45,46], while 
others take the program branching structure into 
account (2, 3, 4, 10·,11,12, 13 ,15, 23, 30, 32, 33, 35]. 
The purpose here is to describe a single program 
flow analysis algorithm which extends all of 
these straight-line optimizing techniques to in-
clude branching structure. The algorithm is pre-
sented formally and is shown to be correct. Im-
plementation of the flow analysis algorithm in a 
practical compiler is also discussed. 

The methods used here are motivated in the 
section which follows. 
2. CONSTANT PROPAGATION 

A fairly simple case of program analysis 
and optimization occurs when constant computations 
are evaluated at compile-time. This process is 
referred to as "constant propagation," or "folding." 
Consider the following skeletal ALGOL 60 program: 

begin integer i,a,b,c,d,e; 
a:=l; c:=O; • 
for i:=l step 1 until 10 Q.Q. 

begin b:=2; 
d:=a+b; 
e:=b+c; 
c:=4; 
end 

end 

This program is represented by the directed graph 
shown in Figure 1 (ignoring calculations which con-
trol the for-loop). The nodes of the directed 
graph represent sequences of instructions contain-
ing no alternate program branches, while the edges 
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of the graph represent program control flow possi-
bilities between the nodes at execution-time. 

Figure 1. A program graph corresponding to 
an ALGOL 60 program containing one loop. 

For purposes of constant propagation, it is 
convenient to associate a "pool" of propagated 
constants with each node in the graph. The pool 
is a set of ordered pairs which indicate variables 
which have constant values when the node is encoun-
tered. Thus, the pool of constants at node B, de-
noted by PB' consists of the single element (a,l) 
since the assignment a:=l at node A must occur 
before node B is encountered during execution of 
the program. 

The fundamental global analysis problem is 
that of determining the pool of propagated constants 
for each node in an arbitrary program graph. By 
inspection of the graph of Figure 1, the pool of 
constants at each node is 



f/J 

{(a,l)} 

{(a,l)} 

{(a, l), (b,2)} 

{ (a,l), (b,2), (d,3)} 
{ (a,l), (b,2), (d,3)} 

In the general case, PN could be determined for 
each node N in the graph as follows. Consider each 
path (A,p1 ,p2 , ••• ,p ,N) from the entry node A to 
the node N. Apply propagation throughout 
this path to obtain a set of propagated constants 
at node N for this path only. The intersection 
of the propagated constants determined for each 
path to N is then the set of constants which can 
be assumed for optimization purposes, since it is 
not known which of the paths will be taken at 
execution-time. 

The pool of propagated constants at node D of 
Figure 1, for example, can be determined as follows. 
A path from the entry node A to the node D is 
(A,B,C,D). Considering only this path, the "first 
approximation" to PD is 

= {(a,l),(b,2),(c,O)} 

A longer path from A to D is (A,B,C,D,E,F,C,D) 
which results in the pool 

2 PD= {(a,l),(b,2),(c,4),(d,3),(e,2)} 

corresponding to this particular path to D. Suc-
cessively longer paths from A to D can be evalu-
ated, resulting in Pi •••• ,Pi for arbitrarily 
large n. The pool of propagated constants which 
can be assumed no matter which flow of control 
occurs is the set of constants common to all Pt; 
that is, 

This procedure, however, is not effective 
since the number of such paths may have no finite 
bound in the case of an arbitrary directed graph. 
Hence, the procedure would not necessarily halt. 
The purpose of the algorithm of the following 
section is to compute this intersection in a 
finite number of steps. 

3. A GLOBAL ANALYSIS ALGORITHM 

The analysis of the program graph of Figure 
1 suggests a solution to the global constant prop-
agation problem. Considering node C, the first 
approximation to PC is given by propagating 
constants along the path (A,B,C), resulting in 

1 Pc= {(a,l),(c,O)}. 

Based upon this approximate pool, the first 
approximations to subsequent nodes can be determined: 

pl {(a,l),(c,O),(b,2)}, 
D 

pl {(a,l),(c,O),(b,2),(d,3)} 
E 

pl {(a,l),(c,O),(b,2),(d,3),(e,2)}. 
F 
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Using Pi, the constant pool resulting from node F 
entering node C is 

P = {(a,l),(b,2),(d,3),(e,2),(c,4)}. 

Note, however, that since 

pc= n 
if i 

it follows that Pc .:;_ n Pe • Thus, rather than 
assuming Pe = P, the second approximation to Pc is 
taken as 

P2 = Pl n P = Pl n 
c c c 

{ (a,l), (b,2), (d,3), (e,2), (c,4)} = { (a,l)}. 

Using Pe, the circuit through the loop past c is 
traced once again. The next approximation at sub-
sequent nodes can then be determined based upon 
Pe: 

Pii n {(a,l),(b,2)} = {(a,l),(b,2)}, 

n {(a,l),(b,2),(d,3)} 

{(a,l),(b,2),(d,3)} , 
p2 

F P?;; n {(a,l),(b,2),(d,3)} 
{ (a, 1) , (b , 2) , ( d , 3) } • 

Continuing around the loop once again from node F 
to node C, the third approximate pool is 
determined as 

= n {(a,l),(b,2),(d,3)} = {(a,l)}. 

Clearly, no changes to subsequent approximate pools 
02cur if the circuit is2traversed again since 

Pc = Pc• and the effect of Pc on the pools in the 
circuit has already been investigated. Thus, the 
analysis stops, and the last approximate pools at 
each node are taken as the final constant pools. 
Note that these last approximations correspond to 
the constant pools determined earlier by inspection. 

Based upon these observations, it is possible 
to informally state a global analysis algorithm. 

a. Start with an entry node in the program graph, 
along with a given entry pool corresponding to 
this entry node. Normally, there is only one 
entry node, and the entry pool is empty. 

b. Process the entry node, and produce optimizing 
information (in this case, a set of propagated 
constants) which is sent to all immediate 
successors of the entry node. 

c. Intersect the incoming optimizing pools with 
that already established at the successor nodes 
(if this is the first time the node is encoun-
tered, assume the incoming pool as the first 
approximation and continue processing), 

d. Considering each successor node, if the amount 
of optimizing information is reduced by this 
intersection (or if the node has been encoun-
tered for the first time) then process the 
successor in the same manner as the initial 
entry node (the order in which the successor 



nodes are processed is unimportant). 

In order to generalize the above notions, it 
is useful to define an "optimizing function" f 
which maps an "input" pool, along with a particular 
node, to a new "output" pool. Given a particular 
set of propagated constants, for example, it is 
possible to examine the operation at a particular 
node and determine the set of propagated constants 
which can be assumed after the node is executed. 
In the case of constant propagation, the function 
can be informally stated as follows. Let V be 
a set of variables, let C be a set of constants, 
and let N be the set of nodes in the graph being 
analyzed-;- The set U = V x C represents ordered 
pairs which may appear in any constant pool. In 
fact, all constant pools are elements of the power 
set of U (i.e., the set of all subsets of U), 
denoted by P(U). Thus, 

f: B_ x P(U) + P(U), 
where (v,c) E f (N,P) <=> 

a. (v,c) E P and the operation at node N does not 
assign a new value to the variable v, or 

b. the operation at node N assigns an expression 
to the variable v, and the expression evaluates 
to the constant c, based upon the constants in 
P. 

Consider the graph of Figure 1, for example. 
The optimizing function can be applied to node A 
with an empty constant pool resulting in 

f(A,0) = {(a,l)}. 

Similarly, the function f can be applied to node 
B with {(a,l)} as a constant pool yielding 

f(B, {(a,l)}) = {(a,l),(c,O)}. 

Note that given a particular path from the entry 
node A to an arbitrary node N E B_, the optimizing 
pool which can be assumed for this path is deter-
mined by composing the function f up to the last 
node of the path. Given the path (A,B,C,D), for 
example, 

f(C,f(B,f(A,0))) = {(a,l),(c,O),(b,2)} 

is the constant pool at D for this path. 

The pool of optimizing information which 
can be assumed at an arbitrary node N in the graph 
being analyzed, independent of the path taken at 
execution time, can now be stated formally as 

where 
FN = {f(pn,f(pn-1'"" • ,f(pl,P)) ••• ) I 

(p 1,p2, .•• ,pn,N) is a path from an entry node p1 
with corresponding entry pool P to the node N}. 

Before formally stating the global analysis 
algorithm, it is necessary to clarify the funda-
mental notions. 
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A finite directed .graph G = is an 
arbitrary finite set of "nodes" B_ and "edges" 
E c N x N. A "path" from A to B in G, for A,B EB_, 
Is-a-sequence of nodes (p1 ,p2 , ••. pk)3 p1 =A and 
Pk= B, where (pi,pi+l)E ! Vi, 1 $ i < k. The 
"length" of a path (pl ,p2 , .•. ,pk) is k-1. 

A "program graph" is a finite directed graph 
G along with a non-empty set of "entry nodes" 
e. that given a path (p1 , •.. ,pn) 
3 p1 Ee and pn = N (i.e., there is a path to every 
node in the graph from an entry node). 

The set of "immediate successors" of a node N 
is given by 

I(N) = {N' E :!! (N,N') EE:_}. 

Similarly, the set of "immediate predecessors" of 
N is given by 

I-1 (N) = {N' E ,N) EE:_}. 

Let the finite set P be the set of all possi-
ble optimizing pools for-a given application (e.g., 
P = P(U) in the constant propagation case, where 
U = V x C), and/\ be a "meet" operation with the 
properties 

ii: p x .!'.. + .!'._, 

x /\ y = y /\ x (commutative), 
x /\ (y ii z) (x /\ y)il z (associative), 

where x, y, z E P. The set P and the /\ operation 
define a finite meet-semilattice. 

The /\ operation defines a partial ordering on 
.!'._ given by 

x $ y <=> x /\ y X Vx,y E p. 

Similarly, 

x < y <=> x $ y and x # y. 

/\x Given X .::_ .!'._, the generalized meet operation x E X 
is defined simply as the pairwise application of 
ii to the elements of X. P is assumed to contain 
a "zero element" 0 '.) 0 $ ; Vx E P. An augmented 
set P' is P by adding a "unit 
elem;nt" l with the properties l f .!'.. and 1 ii x = 
x vx E P; P' = P u {l}. It follows that 
X < l_ V; E-.!'._. -

An "optimizing function" f is defined 

£: N x P + !'._ 

and must have the homomorphism property: 

f(N,x /\ y) = f(N,x) /\ f(N,y), x,y E P. 

Note that f(N,x) < l VN E x E .!'._. 

The global analysis algorithm is now stated: 
Algorithm A. Analysis of each particular program 
graph G depends upon an "entry pool set" 1:'.__ .::_ e x .!'._, 
where (e,x) E if e E e is an entry node with 



corresponding entry optimizing pool x E P. 

Al[initialize] 
AZ[terminate ?] 
A3[select node] 

A4[traverse?] 

AS [set pool] 

A6[loop] 

L + e,. 
If L = 0 then halt. 
Let L' E L, L' = (N,Pi) for 
some N E B_ and Pi E !'._, 
L + L - {L'} 

Let PN be the current approxi-
mate pool of optimizing infor-
mation associated with the node 
N (initially, PN = ]). 
If PN then go to step AZ. 
P+PAP.,L+Lu 

)) IN' E I(N)}. 
Go to step AZ. 

For purposes of constant propagation, 
P = P(U), where U = V x C, as before. The meet 
operation is n, and the less-than-or-equal rela-
tion is Note that the zero element in this 
case is j E P(U). The unit element in P(U) is U 
itself. The algorithm requires a new unit element, 
however, which is not in P(U). The new unit 
element is constructed as follows: let o be a 
symbol not in U, and let U = U u {o}. It follows 
that.!! n x = x Vx E P(U) .!! f P(U). Thus, 
!'..' = !'.. u {.!!_} is obtained from !'.. by adding a unit 
element .!!_. As demonstrated in the proof in Theorem 
Z, the addition of the symbol o to U causes the 
algorithm A to consider each node in the program 
graph at least once. 

Appendix A shows the analysis of the program 
graph of Figure 1 using the entry pool set 

t;:_ = { (A,0)}. 

Theorem 1. The algorithm A is finite. 
Proof. The algorithm A terminates when L = 0. 
Each evaluation of step A3 removes an element 
from L, and elements are added to L only in step 
AS. Thus, A is finite if the number of evalua-
tions of step AS is finite. Informally, each 
evaluation of step AS reduces the "size" of the 
pool PN at some node N. Since the size cannot 
be less than 0, the process must be finite. 
Formally, step AS is performed only when 
PN # PN A Pi. But (PN A A PN = PN A Pi => 
PN A Pi PN, and PN A Pi PN => PN A Pi < PN• 
Thus, the approximate pool PN at node N can be 
reduced at most to 0 since PN + PN AP .. Further, 
since the first app-;oximation to PN is11. and the 
lattice is finite, it follows that step AS can 
be performed only a finite number of times. Thus 
A is finite• 

An upper bound on the number of steps in the 
algorithm A can easily be determined. Let n be 
the cardinality of N and h(P') be a function of 
P' (which, in turn,-may be-;;- function of n) pro-
;:;iding the maximum length of any chain between 1. 
and 0 in P'. Step AS can be executed a maximum of 
h(P') times for any given node. Since there are n 
nodes in the program graph, step AS can be per-
formed no more than n • h(f') times. 

In the case of constant propagation, for 
example, let u be the cardinality of U. The size 
of U varies directly with the number of nodes n. 
In addition, the maximum length of any chain 
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u1 ,uz•···•uk such that u1 = U and uk = 0, where 
u1J uz J u3 ••• J uk is u. Thus, h(P(U)) = u; 
and the theoretical bound is n • u. Since u varies 
directly with n, it follows that the order of the 
algorithm A is no worse than nZ. 

The correctness of the algorithm A is guar-
anteed by the following theorem. 

Theorem z. Let FN = {f(pn,f(pn-1 , .•• , 
f(p1,P)) .• )I (pl•••••Pn,N) is a path from an entry 
node Pl with corresponding entry pool P to the 
node N}. Further, let 

corresponding to a particular program graph G, set 
!'..', and optimizing function f, which satisfy the 
conditions of the algorithm A. If is the final 
approximate pool associated with node N when A 
halts, then PN = V N E N, 

Theorem Z thus relates the final output of the 
algorithm to the intuitive results which were de-
veloped earlier. The proof of Theorem Z is given 
in Appendix B. 

An interesting side-effect of Theorem Z is 
that the order of choice of elements from L in step 
A3 is arbitrary, as given in the following corol-
lary. 

Corollary 1. The final pool PN associated 
with each node N E N upon termination of the algo-
rithm A is uniquely-determined, independent of the 
order of choice of L' from L in step A3. 
Proof. This corollary follows immediately, since 
the proof of Theorem Z in Appendix B is independent 
of the choice of L'e 

Since the choice of L' from L in step A3 is 
arbitrary, it is interesting to investigate the 
effects of the selection criteria upon the algo-
rithm. The number of steps to the final solution 
is clearly affected by this choice. No selection 
method has been established, however, to maximize 
this convergence rate. One might also notice that 
by treating accesses to L as critical sections in 
steps A3 and AS, the elements of L can be processed 
in parallel. That is, independent processes can be 
started in step A3 to analyze all elements of L. 

It is important to note at this point that the 
algorithm A allows one to ignore the global analy-
sis, and concentrate upon development of straight-
line code optimizing functions. That is, if an 
optimizing function f can be constructed for opti-
mizing a sequence of code containing no alternative 
branches, then the algorithm A can be invoked to 
perform the branch analysis, as long as f satisfies 
the conditions of the algorithm. 

4. COMMON SUBEXPRESSION ELIMINATION 

Global common subexpression elimination in-
volves the analysis of a program's structure in 
order to detect and eliminate calculations of re-
dundant expressions. A fundamental assumption is 
that it requires less execution time to store the 
result of a previous computation and load this 
value when the redundant expression is encountered. 



As an example, consider the simple sequence of 
expressions: 

••. r:=a+b; .•. r+x ... (a+b)+x ..• 

which could occur as part of an ALGOL 60 program. 
Figure 2 shows this sequence written as a directed 
graph. Note that the redundant expression (a+b) 
at node V is easily recognized. The entire expres-
sion (a+b)+x at node v is redundant, however, since 
r has the same value as a+b at node U, and r+x is 
computed at node U ahead of node V. It is only 
necessary to describe an optimizing function f 
which detects this situation for straight-line 
code; the algorithm A will make the function glob-
ally applicable. 

Figure 2. An acyclic program graph representing 
a simple computation sequence. 

A convenient representation for the optimizing 
pool in the case of common subexpression elimina-
tion is a partition of a set of expressions. The 
expressions in the partition at a particular node 
are those which occur before the node is encoun-
tered at execution-time. 

The optimizing function for common sub-
expression elimination manipulates the equiva-
lence classes of the partition. Two expressions 
are placed into the same class of the partition 
if they are known to have equivalent values, Con-
sidering Figure 2, for example, the set of expres-
sions which are evaluated before node T is encoun-
tered is empty; thus, PT = 0. The expressions 
evaluated before node U are exactly those which 
occur at node T, including partial computations. 
The set of (partial) computations at node T is 
{a,b,a+b,r}. Since r takes the value of a+b at 
node T, r is known to be equivalent to a+b. 
Thus, P ={albla+b,r}, where "I" separates the 

classes of the pool. Similarly, 
Pv = {albla+b,rlxlr+x} and Pw = 
{albla+b,rlxlr+xl (a+b)+x}. The expression 
a+b at node V is redundant since a+b is in the 
pool Pv· 

Note, however, that the redundant expression 
(a+b)+x at node V is not readily detected. This 
is due to the fact that r+x was computed at node U 
and, as noted above, the evaluation of r+x is the 
same as evaluation of (a+b)+x at node U. In order 
to account for this in the output optimizing pool, 
(a+b)+x is added to the same class as r+x. Thus, 
Pv becomes 

{albla+b,rlxlr+x,(a+b)+x}. 

This process is called "structuring" an optimizing 
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pool. Structuring consists of adding any expres-
sions to the partition which have operands equiva-
lent to the one which occurs at the node being 
considered. The entire expression (a+b)+x at node 
V is then found to be redundant since the struc-
tured pool Pv contains a class with (a+b)+x. 

An optimizing function f1 (N,P) for common sub-
expression elimination can now be informally stated. 

1. Consider each partial computation e in the ex-
pression at node N E N. 

2. If the computation e is in a class of P then e 
is redundant; otherwise 

3. create a new class in P containing e and add 
all (partial) computations which occur in the 
program graph and which have operands equiva-
lent toe (i.e., structure the pool P). 

4. If N contains an assignment d:=e, remove from 
P all expressions containing d as a subexpres-
sion. For each expression e' in P containing 
e as a subexpression, create e'' with d sub-
stituted fore, and place e'' in the class of e'. 

The meet operation A of the algorithm A must 
be defined for common subexpression elimination. 
Since the optimizing pools in P' are partitions of 
expressions, the natural interpretation is as 
intersection by classes, denoted by n. That is, 
given P1 ,P2 E f', P = P1 n P2 is defined as follows. 

Let up n up c 
p E pl p E P2 

and P (c) P
1 

(c) n P
2

(c) Ve EC. 

C is the set of expressions common to both P1 and 
P2 , while P1 (c) and P2 (c) are the classes of c in 
P1 and P2, respectively. Thus, the class of each 
c E C in the new partition P is derived from P1 
and P2 by intersecting the classes P1 (c) and P2 (c). 
For example, if P = {a,bld,e,f} and P2 = 
{a,cld,f,g} then t = {a,d,f} and P1 * p2 = {ald,f}, 

It is easily shown that n has the properties 
required of the meet operation; hence, a "refine-
ment" relation is defined: 

That is, Pl P2 if and only if P1 is a refinement 
of P2 • The refinement relation provides the order-
ing required on the set f' for the algorithm A. 

The function f 1 can be stated formally, and 
shown to have the homomorphism property required 
by the global analysis algorithm [33]: 

Before considering an example of the use of 
f 1 with the algorithm A, the function fl is extend-
ed to combine constant propagation with common sub-
expression elimination. 

5. CONSTANT PROPAGATION AND COMMON SUBEXPRESSION 
ELIMINATION 



The common subexpression elimination optimizing 
function f 1 of Section 4 can easily be extended to 
include constant propagation. Consider, for 
example, the following segment of an ALGOL 60 pro-
gram: 

Figure 3 
segment. 
PB = 0. 
before, 

u:=20; 
y:=40; 

v:=30; ••• u+v ••• x:=lO; 
x+y ••• y-x ••• 

shows a program graph representing this 
Assume the entry pool is empty; i.e., 

The analysis proceeds up to node E as 
resulting in 

PE = {u,zolv,30}. 

Note that u and v are both propagated constants in 
PE since they are both in classes containing con-
stants. If the expression u+v at node E is pro-
cessed as in f 1 , the output pool is 

{u,20lv,30lu+v}. 

Noting that u and v are in classes with constants, 
then u+v must be the propagated constant 20+30 = SO. 
Hence, the constant SO is placed into the class of 
u+v in the resulting partition. Thus, 

PF= {u,20lv,30lu+v,SO}. 

The analysis continues as before up to node H, 
resulting in 

PH= {u,20lv,30\u+v,SOlx,lOly,40}. 

In the case of the f 1 optimizing function, the 
expression x+y at node H is placed into a distinct 
class. The operands x and y, however, are propa-
gated constants since they are equivalent to 10 
and 40, respectively. The expression x+y is 
equivalent to SO which is already in the par-
tition. Thus, x+y is added to the class of SO, 
resulting in 

PI = {u,20\v,30lu+v,SO,x+ylx,10ly,40}. 

Similarly, the output pool from node I is 

{u,20lv,30,y-x\u+v,SO,x+y\x,10\y,40}. 

The analysis above depends upon the ability 
to recognize certain expressions as constants and 
the ability to compute the constant value of an 
expression when the operands are all propagated 
constants. It is also implicit that no two 
differing constants are in the same class. 

An optimizing function f 2 which combines 
constant propagation with common subexpression 
elimination can be constructed from f 1 by altering 
step (3) follows: 

3a. create a new class in P containing e and add 
all (partial) computations which occur in the 
program graph and which have operands equiva-
lent to those of e (structure the pool as 
before). 

3b. If e does not evaluate to a constant value 
based constant operands, then 
no further processing is required (same as 
step (3) of f1); otherwise let z be the 
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constant value of e. If z is already in the 
tion P then combine the class of z with the class 
of e in the resulting partition. If z is not in 
the partition P, then add z to the class of e. The 
expression e becomes a propagated constant in either 
case. 

The function f 2 is stated formally and its 
properties are investigated elsewhere [33]. 

IQ= {u,20} 0$ 
'F= {u,20lv,30lu+v,50} 

fG= {u,2olv,30ju+v,50jx,IO} G$ 
JH= {u,20jv,30lu+v,50jx,IOjy,40} H$ 

FJ • {u,20lv,30lu+v,50,x+ylx,IOly,40} i<tv 
Figure 3. A program graph demonstrating the 
effects of constant propagation. 

6. EXPRESSION OPTIMIZATION 

Expression optimization, as defined earlier, 
includes common subexpression elimination, constant 
propagation, and register optimization. The first 
two forms of optimization are covered by the f 2 
optimizing function; only register optimization 
needs to be considered. It will be shown below 
that fz also provides a simple form of register 
optimization. 

In general, global register optimization in-
volves the assignment of high speed registers 
(accumulators and index registers) throughout a 
program in such a manner that the number of store-
fetch sequences between the high-speed registers 
and central memory is minimized. The store-fetch 
sequences arise in two ways. The first form in-
volves redundant fetches from memory. Consider 
the sequence of expressions 

a:=b+c; d:=a+e; 

for example. A straight-forward translation of 
these statements for a machine with multiple 
general-purpose registers might be 

r 1 :=b; rz:=c; rl:=rl+r2; a:=r1 ; 

r 1 :=a; rz:=e; r1:=r1+rz; d:=r1 • 



Note, however, that the operation r 1 :=a is not 
necessary since r 1 contains the value of the vari-
able a hefore the operation. McKeeman [38] dis-
cusses a technique called "peephole optimization" 
which eliminates these redundant fetches within a 
basic block. 

Figure 4 shows a program corresponding to the 
register operations above. The f 2 optimizing func-
tion is applied to each successive node in the 
graph, resulting in the bptimizing pools shown in 
the Figure. In particular, note that 

The operation at node E assigns the variable a to 
the register r 1 . Since a is already in the class 
of r 1 , however, the operation is redundant and can 
be eliminated. Hence, the f 2 optimizing function 
can be used to generalize peephole optimization. 
Further, the algorithm A extends f 2 to allow global 
elimination of redundant register load operations. 

The second source of store-fetch sequences 
arises when registers are in use and must be 
released temporarily for another purpose. The 
contents of the busy register is stored into a 
central memory location and restored again at a 
later point in the program. An optimal register 
allocation scheme would minimize the number of 
temporary stores. This form of register optimiza-
tion has been treated on a local basis, including 
algorithms which arrange arithmetic computations 
in order to reduce the total number of registers 
required in the evaluation [5,27,36,39,43,45,46]. 
Global register allocation has also been formulated 
as an integer programming problem by Day (14], 
given that register interference and cost of data 
displacement from registers is known. No complete 
solution to the global register allocation problem 
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is known by the author at this time. 

A solution to the global register allocation 
problem will be aided by the analysis of "live" 
and "dead" variables at each node in the program 
graph. A variable v is live at a node N if v could 
possibly be referenced in an expression subsequent 
to node N. The variable v is dead otherwise. Re-
cent work has been done by Kennedy [32] using in-
terval analysis techniques to detect live and dead 
variables on a global basis. 

An optimizing function f 3 can be constructed 
which produces a set of live expressions at each 
node in the graph. The detection of live expres-
sions requires the analysis to proceed from the 
end of the program toward the beginning. Figure 
5 shows the graph of Figure 4 with the direction 
of the edges reversed. The live expressions at 
the beginning of the graph correspond to the live 
expressions at the end of program execution; hence, 
PH = W (there are no live expressions at the end of 
execution). The expression d:=r1 at node H refers 
to the expression r 1. Thus, r 1 is live ahead of 
node H. This fact is recorded by including r 1 
in PG, 

Since r 1 is assigned a new value at node G, it be-
comes a dead expression, but, since r 1 is also 
involved in the expression r 1+rz, it immediately 
becomes a live expression again. Thus, 

The analysis continues, producing the optimizing 
pools associated with each node in Figure 5. The 
expressions which are live at node C, for example, 



The optimizing function f 3 (N,P) which provides 
live expression analysis can be informally stated 
as follows: 

1. If the expression at node N involves an assign-
ment to a variable, let d be the destination 
of the assignment; set P + P - {eld is a sub-
expression in e}(d and all expressions con-
taining d become dead expressions). 

2. Consider each partial computation e at node N. 
Set P + P u {e} (e becomes a live expression). 
The value of f 3 (N,P) is the altered value of P. 

The algorithm A can then be applied to the 
reversed program graph using the optimizing func-
tion f 3• The exit nodes of the original graph be-
come the entry nodes of the reversed graph. In 
addition, the meet operation of the algorithm A is 
the set union operation u. The union operation 
induces the partial ordering given by 

where !'.. is the set of (partial) computations which 
occur in the program graph. Note that 0 = P' and 
l = in this case. Thus, all initial approximate 
pools in the algorithm A are set to 0. 

There is a simple generalization of detection 
of live expressions to "minimum distance analysis" 
where each live expression is accompanied by the 
minimum distance to an occurrence of the expres-
sion. The optimizing pools in this case are sets 
of ordered pairs (e,d), where e is a live expres-
sion and d is the minimum distance (in program 
steps) to an occurrence of e. The optimizing 
function extends live expression analysis by 
tabulating a distance measure as the live expres-
sion analysis proceeds. In addition, the meet 
operation consists of both set union and a com-
parison of the distances corresponding to each 
live expression. This minimum distance infor-
mation can then be used in the register replace-
ment decision: whenever all registers are busy 
and contain live expressions, the register con-
taining the live expression with the largest 
distance to its occurrence is displaced. 

Examples are given in the section which 
follows demonstrating the f 2 and f 3 optimizing 
functions when used in conjunction with' the 
algorithm A. 

7. A TABULAR FORM FOR THE ALGORITHM A 

The processing of the algorithm A can be 
expressed in a tabular form. The tabular form 
allows presentation of a number of examples, and 
provides an intuitive basis for implementing the 
optimizing techniques. In particular, this form 
allows representation of the approximate optimizing 
pools at each node, the elements of L, and the node 
traversing decision. As shown in Table I, the 
column labeled "N" contains the current node being 
processed (i.e., the Nin L' = (N,Pj) in step AS). 
The column labeled "PN + PN " P. '' shows the change 
in the approximate pool at node1N when the node is 
traversed in step AS. The column marked "f (N,PN)" 
contains the output optimizing pool produced by 
traversing the node N (the set braces are omitted 
for convenience of notation). The last column, 
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marked "L," represents the set of nodes remaining 
to be prncessed (the set L of the algorithm A). 

Paraphrasing the algorithm A, the tabular form 
is processed as follows. 

1. 

2. 

3. 

4. 

List all entry nodes and entry pools vertically 
in the right-hand columns, with entry node ei 
in column L, and associated entry pool xi in 
column f(N,PN). Normally, there is only one 
entry node, with the null set as an entry pool. 

Select an L' from L as follows. Choose any 
node from column L, say node N. If there are 
no elements remaining in L then the algorithm 
halts. The line where N was added to L con-
tains the associated output pool Pi in the 
column f(N,PN). Eliminate L' from L by cross-
ing out N from column L. 
Using L' = (N,Pi) from step 2, scan the table 
from the bottom upward to the first occurrence 
of node N in column N. The current approximate 
pool PN is adjacent in the column PN + PN" P .• 
If node N has not appeared in column N, then 1 

assume the first approximation to PN = .!. (and 
hence, PN +.!.A Pi= Pi). 

:;ite 
the new approximate pool determined by PN" Pi 
in the column marked PN + PN A Pi. Compute 
the output pool based upon the new approximate 
pool PN in the column f(N,PN)' and write the 
names of the immediate successors of N in 
column L. Go back to step 2. 

Upon termination of this algorithm, the table 
is scanned from bottom to top; the first occurrence 
of each node N E N is circled. The pool associated 
with each circled-node in column PN + PN A Pi is 
the final pool for that node. Any nodes of N which 
do not appear in column N cannot be reached from 
an entry node, and can be eliminated from the pro-
gram graph. 

Table I shows the analysis of the program 
graph given in Figure 1, using the fz optimizing 
function. The entry node set for this analysis is 
e. = {(A,0)}, as before. L is treated as a stack; 
elements are removed from the lower right position 
of column L in step 2. After processing the graph, 
the final pools at each node are listed in the 
table opposite the circled nodes. The final pool 
at node E, for example, is 

PE= {a,llb,2ld,a+b,3}. 
The final pools determined by the algorithm corre-
spond to those determined previously in Section 2. 

TABLE I 
step N PN-PNAP1 f{N,PN) L 

l ¢ /.. 
2 ® ¢ a,l 
3 @ a,l a,l lc,O ¢ 
4 c a,l/c,0 a,Jic,O/b,2 p 
5 D a,l/c,O/b,2 a ,l / c, O /b, 2 /d,a+b, 3 t 
6 E a,!/c,0/b,2 /d,a+b,3 a ,l /c, O /b, 2 ,e, bl-c Jct ,a+b, 3 t 
7 F a ,I Jc, 0 lb. 2 ,s ,b+.c jd .a+b. 3 a,l/b.2,e /d,a+b,3 /c,4 ¢ 
8 © a,l a,l/b,2 lil 
9 @ a,l/b,2 a,l /b,2 t 

10 ® a,l /b,2 /d,a+b,3 a ,l /b, 2 /d ,a+b, 3 /bl-c, e ; 
11 ® a,l/b,2 a,l/b,2/c,4 <t 



Figure 6 shows a program graph with two paral-
lel feedback loops. The analysis of this program 
graph is given in Table II, using the f 2 optimizing 
function. Note that in step (8), 

P = {lOJyJx,5,u}. 
F 

Applying f 2 (F ,PF), the resulting output pool is 

{lOJyJx,5,uJu·y,x·y}. 

The expression x•y is placed into the class of u•y 
when the partition is structured, That is, x·y is 
an expression which occurs in the program, and x•y 
is operand equivalent to u'y. Thus, x•y must be 
added to the class of u•y in the output pool. The 
redundant expression x'y is detected at node G 
since the final pool PG contains x•y. 

Figure 6. A program graph with two parallel 
feedback loops. 

TABLE II 
step N PN- PNA Pt f(N,PN) L 

J ¢ /.. 
z ® ¢ x,Jo ;, 
3 ® x,10 x,JO fy fx·y <t 
4 c x,JOfyfx•y x,JO fy fx•y p,¢ 
5 G x,JO[yfx·y x,JO fy fx•y <t 
6 D x,!Ofyfx•y JO fy fx•y fx, 5 t 
7 ® JOfyfx,5 !Ofyfx,5,u ; 
8 ® 10 [y [x, 5,u JO fy fx,5,u [u·y ,X•Y <t 
9 © x [10 fy fx•Y x fJO fy fx•y jll,¢ 

10 @ xf!Ofyfx•y x [10 fy fx.y <t 
II @ xf!Ofy fx•Y x,5 fJO fy ;. 

Global live expression analysis can be per-
formed on the program graph of Figure 6 by re-
versing the graph, as shown in Figure 7. Given 
that node C is the exit node of the original graph, 
node C becomes the entry node of the reversed 
graph. {(C,0)} in the analysis shown in 
Table III, using the f 3 optimizing function. For 
example, the final pool 

PA= {x,y,x·y} 

y, and x•y are 
in the original 

Figure 7. The reversed graph corresponding to 
the program graph of Figure 6. 

TABLE III 
step N PN-PNA Pt f(N,PN) L 
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I ¢ <t 
z c ¢ x ;,,f,¢ 
3 G x x,y,x•y ¢ 
4 © x,y,x•y x,y,x•y ;,,;,¢ 
5 x,y,x•y x,y,x•y ¢ 
6 ® x,y,x•y x,y,x.y,u,u•y t 
7 ® x,y,x•y,u,u•y x,y,x•y jll 
8 @ x,y,x•y y ¢ 
9 x,y,x•y x,y,X•Y /.. 
10 x,y,x•y y,JO 

This tabular form can be used for processing 
any program graph using an optimizing function 
which satisfies the conditions of the algorithm A. 

8. IMPLEMENTATION NOTES 

Implementation of the above optimizing tech-
niques in a practical compiler is considered below. 
In particular, the optimizer operates upon an in-
termediate form of the program, such as tree struc-
tures or Polish [24], augmented by branching infor-
mation. The control flow analyzer accepts the in-
termediate form and calls the various optimizing 
functions to process each basic block, roughly 
paralleling the tabular form given previously. A 
single stack can be used to list uninvestigated 
basic blocks, corresponding to "L" of the tabular 
form. Pool information must be maintained for 
each basic block corresponding to the "P + PN A Pi" 
column, but may be discarded and if the 
node is encountered again in the analysis (i.e., 
the node reappears in column "N"). The output 
optimizing pools found in column "f(N,PN)," however, 
can be intersected with all immediate successors 
as they are produced, and thus need not be main-
tained during analysis. The final optimizing pools 
(determined by "scanning" the tabular form) are 
simply the current pools attached to each basic 
block. 

The optimizing functions and corresponding 
meet operations are generally simple to implement 
using bit strings for sets, and lists for ordered 
pairs. Common subexpression elimination, however, 
requires further consideration since direct repre-
sentation and manipulation of structured partitions 
is particularly unwieldy. 

One approach to handling structured partitions 
allows direct representation of the classes, but 
limits the number of expressions which appear. A 
list of all (sub)expressions is constructed by 
prescanning the program (an optimizing function 
which always returns 0 is useful for this scan). 
When a partition is structured, only those expres-
sions which occur in the expression list are in-
cluded. The set of eligible expressions can be 
further reduced by first performing live expression 
analysis. The expressions which appear in a parti-
tion are limited to the live expressions at the 
point the partition is generated, The use of live 
expression analysis before common subexpression 
elimination will generally reduce partition size 
and improve the convergence rate of the analysis 
algorithm. 

A second approach to representation of struc-
tured partitions involves the assignment of "value 



numbers" to the expressions in the optimizing pools 
[13,24,33,34]. A value number is a unique integer 
assigned to all elements of the same class. The 
sequence of statements 

a:=b+c; d:=b; e:=a; 
results in the structured partition 

P1 = { b,d I c I b+c,d+c,a,e }• 
Next, assign the value numbers 1, 2, and 3 to the 
three classes, and replace the expressions b+c and 
d+c by (1)+(2), representing the addition of elements 
of class (1) and class (2). P1 can now be written 
as P = { b,d J c [(1)+(2) ,a,e }· 

2 (1) (2) (3) 

Similarly, the sequence of assignments 
a:=d; b:=c; e:=b+c; 

produces the structured partition represented by 

P2 = {a,d[b,cf (5)+(5),e }· 
(4) (5) (6) 

which expands to 
P2 = {a,dfb,cf b+c,b+b,c+b,c+c,e} 

Thus, the assignment of value numbers provides a 
data structure whose size is linear in the number 
of expressions in the basic block. In addition, 
the value number representation is particularly 
easy to construct and use in the detection of 
common subexpressions. 

Given two partitions Pi and P2 in value number 
form, the meet operation P = P1 n P2 can be itera-
tively computed. The computation proceeds as 
follows. Construct a list C consisting of the 
number of occurrences of each value number in P1 . 
The elements of C thus provide a count of the 
number of elements in each class of P1 • This 
count is decremented whenever an element of the 
class is processed, until the count goes to zero 
indicating the entire class is exhausted. 

A list R is also maintained which gives a 
mapping of the class numbers in P1 and P2 to the 
resulting class numbers in P. The elements of R 
are of the form r(r1 ,r2), indicating that value 
number r 1 from P 1 and value number r 2 from P2 map 
to value number r in the resulting partition P. 
R is built during the construction of P. 

The elements of P1 are scanned and processed 
until the classes of P1 are exhausted. Suppose q 
is an identifier in P1 with value number v1 • The 
count corresponding to v1 in the list C is first 
decremented. If q does not occur in P2 then the 
next element of P1 is selected. Otherwise, let v2 
be the value number corresponding to q in P2• R 
is scanned for an element v(v1 ,v2); if not found, 
a new value number v is assigned, and v(v1,v2) is 
added to R. The identifier q is placed into P 
with value number v. 

If the element selected from P1 is not an 
identifier, then it is an expression of the form 
(n1) Q (m1) with value number v1 , where n1 and m1 are value numbers in P1 (assuming all operations 
0 are binary). If the count of either class (n1) 
or (m ) is non-zero in C, defray the processing of 
this otherwise, decrement the count for 
class (v ) in C, as above. Examine R for pairs of 
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elements n(n1 ,n2) and m(m1 ,m2) where n2 and m2 are 
value numbers in P2 • For each such pair, search 
Pz for an entry (n2) Q (m2). If found, let v2 be 
the value number of this matched expression. Scan 
R for an element of the form v(v1 ,v2), and make a 
new entry if not found, as above. The expression 
(n) Q (m) with value number v is then placed into 
the intersection P. 

As an example, consider the class intersection 
of the partitions P1 and P2 given previously. These 
partitions are represented by the value number tables 

P1 P2 
val/I 

b (1) a 
d (1) d 
c (2) b 

(1)+(2) (3) c 
a (3) (5)+(5) 
e (3) e 

val/I 
(4) 
(4) 
(5) 
(5) 
(6) 
(6) 

The class count list C for the partition P1 is 
initially 

val/I 
(1) 
(2) 
(3) 

count 
-2-

1 
3 

The identifiers b, d, and c are processed first, 
reducing the class counts for (1) and (2) to zero 
in C. The class mapping list at this point is 

R = {7(1,5), 8(1,4), 9(2,5)} 

The identifiers b, d, and c are placed into P with 
value numbers 7, 8, and 9, respectively. The ex-
pression (1)+(2) with value number (3) is then 
processed from P1 , since the class counts for both 
(1) and (2) are zero. Based upon the mappings in 
R, P2 is searched for an occurrence of (5)+(5) or 
(4)+(5). Since (5)+(5) occurs in P2 with value 
number (6), R is scanned for an element of the form 
v(3,6), and, since no such element is found, 10(3,6) 
is added to R. The expression (7)+(9) with value 
number (10) is included in P. The identifier a is 
then processed, resulting in another mapping 11(3,4) 
in R; a is added to P with value number (11). 
nally,.the identifier e from P1 with value number 
(3) is processed. A match is found in P2 with 
value number (6). Since the element 10(3,6) is 
already in R, e is added to P with value number 
(10). The final value of the class list is 

R = {7(1,5), 8(1,4), 9(2,S), 10(3,6), 11(3,4)} 

which can now be discarded. The value of the re-
sulting partition P is 

vallf 
b (7) 
d (8) 
c (9) 

(7)+(9) (10) 
a (11) 
e (10) 

which represents the structured partition 

{b[d[cJb+c,eJa} 

Note that the predicate P2 2 P1 is easily computed 



during this process. 

The control flow analysis algorithm has been 
implemented as a general-punpose optimizing module, 
including several optimizing functions. The imple-
mentation is described in some detail elsewhere 
[33]. 

9. CONCLUSIONS 

An algorithm has been presented which, in 
conjunction with various optimizing functions, 
provides global program optimization, Optimizing 
functions have been described which provide con-
stant propagation, common subexpression elimina-
tion, and a degree of register optimization. 

The functions which have been given by no 
means exhaust those which are useful for optimiza-
tion. Simplifying formal identities such as o+x = 
o+x = x can be incorporated to further coalesce 
equivalence classes at each application of the f 2 
optimizing function. In addition, it may be pos-
sible to develop functions which extend live ex-
pression analysis to completely solve the global 
register allocation problem. 
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APPENDIX A 
1 Al: L = {(A,0)} 
2 

3 

4 

s 

A3: 
A4: 

AS: 

A3: 
6 AS: 
7 A3: 
8 AS: 

9 A3: 
10 AS: 

11 A3: 

L' (A,0), L 

P N PA = l_, Pi 0 ' PA f, Pi' 
PA+ PA A pi =pi = 0 

PA 0, L = {(B,{(a,l)})} 

L' (B,{(a,l)}),L=0 
PB {(a,l)}, L = {(C,{(a,l),(c,O)})} 
L' (C,{(a,l),(c,O)}), L = 0 
PC {(a,l),(c,O)}, 
L = {(D,{(a,l),(c,O),(b,2)})} 
L' (D,{ (a,l), (c,O), (b,2)}), L 

PD {(a,l),(c,O),(b,2)}, 
L = {(E,{(a,l),(c,O),(b,2),(d,3)})} 
L' = (E,{(a,l),(c,O),(b,2),(d,3)}), L 

12 AS: PE {(a,l),(c,O),(b,2),(d,3)}, 
L = {(F,{(a,l),(c,O),(b,2),(d,3),(e,2)})} 

13 A3: L' = (F,{(a,l),(c,O),(b,2),(d,3),(e,2)}), 
L = 0 

14 AS: 

lS A3: 

16 AS: 
17 A3: 
18 AS: 

19 A3: 
20 AS: 

PF= {(a,l),(c,O),(b,2),(d,3),(e,2)}, 
L = {(C,{(a,l),(c,4),(b,2),(d,3),(e,2)})} 
L' = (C,{(a,l),(c,4),(b,2),(d,3),(e,2)}), 
L = 0 
Pc {(a,l)}, L = {(D,{(a,l),(b,2)})} 
L' (D,{ (a,l), (b,2)}), L = 0 
PD {(a,l),(b,2)}, 
L = {(E,{(a,l),(b,2),(d,3)})} 
L' (E,{(a,l),(b,2),(d,3)}), L 
PE {(a,l),(b,2),(d,3)}, 
L = {(F,{(a,l),(b,2),(d,3)})} 

21 A3: L' (F,{(a,l),(b,2),(d,3)}), L 
22 AS: PF {(a,l),(b,2),(d,3)}, 

L = {(C,{(a,l),(b,2),(d,3),(c,4)})} 
23 A3: L' = (C,{(a,l),(b,2),(d,3),(c,4)}), halt. 

APPENDIX B 
The proof of Theorem 2 is given below. First 

note that given a program graph G with multiple 
entry nodes, an augmented graph G' can be con-
structed with only one entry node with entry pool 
0. The construction is as follows. Let e= 
te1 ,e2, ... ek} be the entry node set and .S: = 
{ (e1 ,x1),(e2,x4), ... , (ek,xk)} be the entry pool 
set corresponding to a particular analysis. Con-
sider the augmented graph G' = where 



E' = E u 

{(v,v1),(v,v2), ... ,(v,vk),(v1 ,e1), .. ,(vk,ek)}. 

The augmented graph G' has a single entry v 
and entry node set e ' = { v}. The functional value 
of f is defined for these nodes as 

f(v,P) = Q VP E !'._, and 

Hence, the analysis proceeds as if there is only a 
?ingle entry node with entry pool Q; i.e., 

= { (v,.Q_)}. 

:· If = f(N,Pl) A f(N,P2) then 
P1-P2 -> f(N,P1)-f(N,P2). VN E P1,P2 E !'..· 

Proof. The proof is immediate since P sP 2 => 
f(N,P 1AP2) = f(N,P 1) =(f(N,P1) Af (N,P 2J)=> 
f(N,P 1) s f(N,P2) a 
Lemma 2. Let x: !'..· if f(N,PlAPz) = 
f(N,P1)Af(N,Pz) VN E P1 ,P 2 E !'._then 

f (N, /\x - /\ 
X ) - xf(N,x). 

XE XE 

Proof. The proof proceeds by induction on the 
cardinalilj(vof X, denoted by C(X). If C(X) = 1 
then = f(N,x) and the lemma is trivially 
true. If C(X) = k, k>l, assume lemma is true 
for all < k. Let yEX and X' = X -{y}. 

f(N,/\Xx) = f(N,yA(/\xx,)) = f(N,y)Af(N,/\xx,) 
XE XE XE 

f(N,y)A(/\X,f(N,x)) = A f(N,x) e XE XEX 
Proof of Theorem 2. It will first be shown by 
induction on the path length that 

Consider the following proposition on n: 
PN s f(pn,f(pn-l''''•f(p1 ,Q)) ... ) for all 

final pools PN and paths of length n from the entry 
node Pi with entry pool Q to node N, VN E N. 

The trivial case is easily proved. The only 
node which can be reached by a path of length 0 
from the entry node p1 is p1 itself. Hence, it is 
only necessary to show that P s 0. This is P1 -
immediate, however, since (p1 ,Q) is initially 
placed into L in step Al, ann extracted in step A3 
as L' = (p1 ,Q). But, Pp

1 
is initially l, and hence 

p i Pi= 0 in step A4. Thus, PPl + P A 0 = Q 
Pl - Pl 

in step AS. Thus, it follows that P Q s .Q_. Pl 
Suppose the proposition is true for all n<k, 
for k>O. That is, PN s f(pn 1 ... ,f(p11Q)) ... ) 
for all paths of length less than k from pl 
to node N, for each node N E N. 

Let KE path (P1 , ... ,pk 1K) of length k. It 
will be shown that PK s f(pk 1f(pk-l•···1f(p11Q)) ••• ). 

Consider each immediate predecessor in I-lrK). Let 
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pk denote one such predecessor, and let T = 
f(pk-l''''•f(p1 ,Q)) .•. ). By inductive hypothesis, 
PPk s T. It will be shown that PK s f(pk 1T). 

Since PPk is the final approximation to the 
pool at Pk• must have been added to L 
in step AS. But, Pp - T => f(pk,P ) s f (pk 1T) by 
Lemma 1. The pair (f,f(pk, P )) be processed 

Pk 
in step A3 before the algorithm halts. Thus, either 
PKsf(pk,PPk) in step A4, or PK+-PK A f(pk,PPk)' 
In either case, PK s f(pk,PPk). But, 

PK s f(pk,Pp ) s f(pk 1T) => PK s f(pk 1T) 
k 

=>PK s f(pk 1f(pk_1 , ... ,f(pl'Q)) ... ). 

Thus, since the proposition holds for paths of 
length k, it follows by induction that the proposi-
tion is true for all paths from the entry node to 
node N, for all N E 

The following claim will be proved in order to 
show that XN s PN for all N E at any point in 
the processing of G by the algorithm A, either N 
has not been encountered in step AS, or s 
where PN is the current approximate pool associated 
with none N, for all N E The proof proceeds by 
induction on the number of times step AS has been 
executed. Suppose step AS has been executed only 
once. Then L' = (p1 ,Q) and the only nQde encountered 
in step AS is the entry node Pl• The entry pool 0 
corresponds to a path of length zero from p1 to p-. 
Thus, Q E Fp

1 
=> Xp

1 
= Q and the proposition is 1 

trivially true since xp
1 

= 0 s Pp
1 

= Q. 
Suppose that either N has not been encountered 

in step AS, or s PN VN E step AS has been 
executed n<k times, k>l. Consider the kth execution 
of step AS. Let L' = (N,T) where T = f(N',P ,) for 
some N' E I-l(N). The pair (N,T) was added L 
when the node N' was processed in the nth execution 
of step AS, for n<k. Hence, x,_,, s PN' by inductive 
hypothesis. But, using Lemma 

s V f(N',f(pt, ... ,f(p1 ,Q)) .. ,) 

(pl'' •. ,pt,N' ,N) 

f(N'' V f(pt,f(pt-1'' '' ,f(pl,Q))'' .) 
(pl, ... ,pt,N') 

= f (NI ,XN') • 

s PN' and thus s f (N' => 

s f(N' ,PN,) = T, using Lemma 1. 

If this step is the first occurrence of node 
Nin AS, ;hen PN +- l AT= T since f(N',P) # !_ 
for any N EN, P E P. In this case, s P = T 
after step AS-: Otherwise, suppose this is the 

step AS is executed. Hence, the proposition holds 
for each execution of step AS. In particular, 
XN s PN yN E !:!_ upon termination of the algorithm 
A. Hence, the theorem is proved since 


