
Calhoun: The NPS Institutional Archive
DSpace Repository

Faculty and Researchers Faculty and Researchers' Publications

1973

A unified approach to global program optimization

Kildall, Gary A.

http://hdl.handle.net/10945/42162

This publication is a work of the U.S. Government as defined in Title 17, United
States Code, Section 101. Copyright protection is not available for this work in the
United States.

Downloaded from NPS Archive: Calhoun

A UNIFIED APPROACH TO GLOBAL
PROGRAM OPTIMIZATION

Gary A. Kildall

Computer Science Group
Naval Postgraduate School

Monterey, California

Abstract
A technique is presented for global analysis of program structure in order to perform compile time

optimization of object code generated for expressions. The global expression optimization presented
includes constant propagation, common subexpression elimination, elimination of redundant register load
operations, and live expression analysis. A general purpose program flow analysis algorithm is developed
which depends upon the existence of an "optimizing function." The algorithm is defined formally using a
directed graph model of program flow structure, and is shown to be correct, Several optimizing functions
are defined which, when used in conjunction with the flow analysis algorithm, provide the various forms of
code optimization. The flow analysis algorithm is sufficiently general that additional functions can easily
be defined for other forms of global code optimization.

1. INTRODUCTION
A number of techniques have evolved for the

compile-time analysis of program structure in order
to locate redundant computations, perform constant
computations, and reduce the number of store-load
sequences between memory and high-speed registers.
Some of these techniques provide analysis of only
straight-line sequences of instructions [5,6,9,14,
17,18,19,20,27,29,34,36,38,39,43,45,46], while
others take the program branching structure into
account (2, 3, 4, 10·,11,12, 13 ,15, 23, 30, 32, 33, 35].
The purpose here is to describe a single program
flow analysis algorithm which extends all of
these straight-line optimizing techniques to in-
clude branching structure. The algorithm is pre-
sented formally and is shown to be correct. Im-
plementation of the flow analysis algorithm in a
practical compiler is also discussed.

The methods used here are motivated in the
section which follows.
2. CONSTANT PROPAGATION

A fairly simple case of program analysis
and optimization occurs when constant computations
are evaluated at compile-time. This process is
referred to as "constant propagation," or "folding."
Consider the following skeletal ALGOL 60 program:

begin integer i,a,b,c,d,e;
a:=l; c:=O; •
for i:=l step 1 until 10 Q.Q.

begin b:=2;
d:=a+b;
e:=b+c;
c:=4;
end

end

This program is represented by the directed graph
shown in Figure 1 (ignoring calculations which con-
trol the for-loop). The nodes of the directed
graph represent sequences of instructions contain-
ing no alternate program branches, while the edges

194

of the graph represent program control flow possi-
bilities between the nodes at execution-time.

Figure 1. A program graph corresponding to
an ALGOL 60 program containing one loop.

For purposes of constant propagation, it is
convenient to associate a "pool" of propagated
constants with each node in the graph. The pool
is a set of ordered pairs which indicate variables
which have constant values when the node is encoun-
tered. Thus, the pool of constants at node B, de-
noted by PB' consists of the single element (a,l)
since the assignment a:=l at node A must occur
before node B is encountered during execution of
the program.

The fundamental global analysis problem is
that of determining the pool of propagated constants
for each node in an arbitrary program graph. By
inspection of the graph of Figure 1, the pool of
constants at each node is

f/J

{(a,l)}

{(a,l)}

{(a, l), (b,2)}

{ (a,l), (b,2), (d,3)}
{ (a,l), (b,2), (d,3)}

In the general case, PN could be determined for
each node N in the graph as follows. Consider each
path (A,p1 ,p2 , ••• ,p ,N) from the entry node A to
the node N. Apply propagation throughout
this path to obtain a set of propagated constants
at node N for this path only. The intersection
of the propagated constants determined for each
path to N is then the set of constants which can
be assumed for optimization purposes, since it is
not known which of the paths will be taken at
execution-time.

The pool of propagated constants at node D of
Figure 1, for example, can be determined as follows.
A path from the entry node A to the node D is
(A,B,C,D). Considering only this path, the "first
approximation" to PD is

= {(a,l),(b,2),(c,O)}

A longer path from A to D is (A,B,C,D,E,F,C,D)
which results in the pool

2 PD= {(a,l),(b,2),(c,4),(d,3),(e,2)}

corresponding to this particular path to D. Suc-
cessively longer paths from A to D can be evalu-
ated, resulting in Pi •••• ,Pi for arbitrarily
large n. The pool of propagated constants which
can be assumed no matter which flow of control
occurs is the set of constants common to all Pt;
that is,

This procedure, however, is not effective
since the number of such paths may have no finite
bound in the case of an arbitrary directed graph.
Hence, the procedure would not necessarily halt.
The purpose of the algorithm of the following
section is to compute this intersection in a
finite number of steps.

3. A GLOBAL ANALYSIS ALGORITHM

The analysis of the program graph of Figure
1 suggests a solution to the global constant prop-
agation problem. Considering node C, the first
approximation to PC is given by propagating
constants along the path (A,B,C), resulting in

1 Pc= {(a,l),(c,O)}.

Based upon this approximate pool, the first
approximations to subsequent nodes can be determined:

pl {(a,l),(c,O),(b,2)},
D

pl {(a,l),(c,O),(b,2),(d,3)}
E

pl {(a,l),(c,O),(b,2),(d,3),(e,2)}.
F

195

Using Pi, the constant pool resulting from node F
entering node C is

P = {(a,l),(b,2),(d,3),(e,2),(c,4)}.

Note, however, that since

pc= n
if i

it follows that Pc .:;_ n Pe • Thus, rather than
assuming Pe = P, the second approximation to Pc is
taken as

P2 = Pl n P = Pl n
c c c

{ (a,l), (b,2), (d,3), (e,2), (c,4)} = { (a,l)}.

Using Pe, the circuit through the loop past c is
traced once again. The next approximation at sub-
sequent nodes can then be determined based upon
Pe:

Pii n {(a,l),(b,2)} = {(a,l),(b,2)},

n {(a,l),(b,2),(d,3)}

{(a,l),(b,2),(d,3)} ,
p2

F P?;; n {(a,l),(b,2),(d,3)}
{ (a, 1) , (b , 2) , (d , 3) } •

Continuing around the loop once again from node F
to node C, the third approximate pool is
determined as

= n {(a,l),(b,2),(d,3)} = {(a,l)}.

Clearly, no changes to subsequent approximate pools
02cur if the circuit is2traversed again since

Pc = Pc• and the effect of Pc on the pools in the
circuit has already been investigated. Thus, the
analysis stops, and the last approximate pools at
each node are taken as the final constant pools.
Note that these last approximations correspond to
the constant pools determined earlier by inspection.

Based upon these observations, it is possible
to informally state a global analysis algorithm.

a. Start with an entry node in the program graph,
along with a given entry pool corresponding to
this entry node. Normally, there is only one
entry node, and the entry pool is empty.

b. Process the entry node, and produce optimizing
information (in this case, a set of propagated
constants) which is sent to all immediate
successors of the entry node.

c. Intersect the incoming optimizing pools with
that already established at the successor nodes
(if this is the first time the node is encoun-
tered, assume the incoming pool as the first
approximation and continue processing),

d. Considering each successor node, if the amount
of optimizing information is reduced by this
intersection (or if the node has been encoun-
tered for the first time) then process the
successor in the same manner as the initial
entry node (the order in which the successor

nodes are processed is unimportant).

In order to generalize the above notions, it
is useful to define an "optimizing function" f
which maps an "input" pool, along with a particular
node, to a new "output" pool. Given a particular
set of propagated constants, for example, it is
possible to examine the operation at a particular
node and determine the set of propagated constants
which can be assumed after the node is executed.
In the case of constant propagation, the function
can be informally stated as follows. Let V be
a set of variables, let C be a set of constants,
and let N be the set of nodes in the graph being
analyzed-;- The set U = V x C represents ordered
pairs which may appear in any constant pool. In
fact, all constant pools are elements of the power
set of U (i.e., the set of all subsets of U),
denoted by P(U). Thus,

f: B_ x P(U) + P(U),
where (v,c) E f (N,P) <=>

a. (v,c) E P and the operation at node N does not
assign a new value to the variable v, or

b. the operation at node N assigns an expression
to the variable v, and the expression evaluates
to the constant c, based upon the constants in
P.

Consider the graph of Figure 1, for example.
The optimizing function can be applied to node A
with an empty constant pool resulting in

f(A,0) = {(a,l)}.

Similarly, the function f can be applied to node
B with {(a,l)} as a constant pool yielding

f(B, {(a,l)}) = {(a,l),(c,O)}.

Note that given a particular path from the entry
node A to an arbitrary node N E B_, the optimizing
pool which can be assumed for this path is deter-
mined by composing the function f up to the last
node of the path. Given the path (A,B,C,D), for
example,

f(C,f(B,f(A,0))) = {(a,l),(c,O),(b,2)}

is the constant pool at D for this path.

The pool of optimizing information which
can be assumed at an arbitrary node N in the graph
being analyzed, independent of the path taken at
execution time, can now be stated formally as

where
FN = {f(pn,f(pn-1'"" • ,f(pl,P)) •••) I

(p 1,p2, .•• ,pn,N) is a path from an entry node p1
with corresponding entry pool P to the node N}.

Before formally stating the global analysis
algorithm, it is necessary to clarify the funda-
mental notions.

196

A finite directed .graph G = is an
arbitrary finite set of "nodes" B_ and "edges"
E c N x N. A "path" from A to B in G, for A,B EB_,
Is-a-sequence of nodes (p1 ,p2 , ••. pk)3 p1 =A and
Pk= B, where (pi,pi+l)E ! Vi, 1 $ i < k. The
"length" of a path (pl ,p2 , .•. ,pk) is k-1.

A "program graph" is a finite directed graph
G along with a non-empty set of "entry nodes"
e. that given a path (p1 , •.. ,pn)
3 p1 Ee and pn = N (i.e., there is a path to every
node in the graph from an entry node).

The set of "immediate successors" of a node N
is given by

I(N) = {N' E :!! (N,N') EE:_}.

Similarly, the set of "immediate predecessors" of
N is given by

I-1 (N) = {N' E ,N) EE:_}.

Let the finite set P be the set of all possi-
ble optimizing pools for-a given application (e.g.,
P = P(U) in the constant propagation case, where
U = V x C), and/\ be a "meet" operation with the
properties

ii: p x .!'.. + .!'._,

x /\ y = y /\ x (commutative),
x /\ (y ii z) (x /\ y)il z (associative),

where x, y, z E P. The set P and the /\ operation
define a finite meet-semilattice.

The /\ operation defines a partial ordering on
.!'._ given by

x $ y <=> x /\ y X Vx,y E p.

Similarly,

x < y <=> x $ y and x # y.

/\x Given X .::_ .!'._, the generalized meet operation x E X
is defined simply as the pairwise application of
ii to the elements of X. P is assumed to contain
a "zero element" 0 '.) 0 $; Vx E P. An augmented
set P' is P by adding a "unit
elem;nt" l with the properties l f .!'.. and 1 ii x =
x vx E P; P' = P u {l}. It follows that
X < l_ V; E-.!'._. -

An "optimizing function" f is defined

£: N x P + !'._

and must have the homomorphism property:

f(N,x /\ y) = f(N,x) /\ f(N,y), x,y E P.

Note that f(N,x) < l VN E x E .!'._.

The global analysis algorithm is now stated:
Algorithm A. Analysis of each particular program
graph G depends upon an "entry pool set" 1:'.__ .::_ e x .!'._,
where (e,x) E if e E e is an entry node with

corresponding entry optimizing pool x E P.

Al[initialize]
AZ[terminate ?]
A3[select node]

A4[traverse?]

AS [set pool]

A6[loop]

L + e,.
If L = 0 then halt.
Let L' E L, L' = (N,Pi) for
some N E B_ and Pi E !'._,
L + L - {L'}

Let PN be the current approxi-
mate pool of optimizing infor-
mation associated with the node
N (initially, PN =]).
If PN then go to step AZ.
P+PAP.,L+Lu

)) IN' E I(N)}.
Go to step AZ.

For purposes of constant propagation,
P = P(U), where U = V x C, as before. The meet
operation is n, and the less-than-or-equal rela-
tion is Note that the zero element in this
case is j E P(U). The unit element in P(U) is U
itself. The algorithm requires a new unit element,
however, which is not in P(U). The new unit
element is constructed as follows: let o be a
symbol not in U, and let U = U u {o}. It follows
that.!! n x = x Vx E P(U) .!! f P(U). Thus,
!'..' = !'.. u {.!!_} is obtained from !'.. by adding a unit
element .!!_. As demonstrated in the proof in Theorem
Z, the addition of the symbol o to U causes the
algorithm A to consider each node in the program
graph at least once.

Appendix A shows the analysis of the program
graph of Figure 1 using the entry pool set

t;:_ = { (A,0)}.

Theorem 1. The algorithm A is finite.
Proof. The algorithm A terminates when L = 0.
Each evaluation of step A3 removes an element
from L, and elements are added to L only in step
AS. Thus, A is finite if the number of evalua-
tions of step AS is finite. Informally, each
evaluation of step AS reduces the "size" of the
pool PN at some node N. Since the size cannot
be less than 0, the process must be finite.
Formally, step AS is performed only when
PN # PN A Pi. But (PN A A PN = PN A Pi =>
PN A Pi PN, and PN A Pi PN => PN A Pi < PN•
Thus, the approximate pool PN at node N can be
reduced at most to 0 since PN + PN AP .. Further,
since the first app-;oximation to PN is11. and the
lattice is finite, it follows that step AS can
be performed only a finite number of times. Thus
A is finite•

An upper bound on the number of steps in the
algorithm A can easily be determined. Let n be
the cardinality of N and h(P') be a function of
P' (which, in turn,-may be-;;- function of n) pro-
;:;iding the maximum length of any chain between 1.
and 0 in P'. Step AS can be executed a maximum of
h(P') times for any given node. Since there are n
nodes in the program graph, step AS can be per-
formed no more than n • h(f') times.

In the case of constant propagation, for
example, let u be the cardinality of U. The size
of U varies directly with the number of nodes n.
In addition, the maximum length of any chain

197

u1 ,uz•···•uk such that u1 = U and uk = 0, where
u1J uz J u3 ••• J uk is u. Thus, h(P(U)) = u;
and the theoretical bound is n • u. Since u varies
directly with n, it follows that the order of the
algorithm A is no worse than nZ.

The correctness of the algorithm A is guar-
anteed by the following theorem.

Theorem z. Let FN = {f(pn,f(pn-1 , .•• ,
f(p1,P)) .•)I (pl•••••Pn,N) is a path from an entry
node Pl with corresponding entry pool P to the
node N}. Further, let

corresponding to a particular program graph G, set
!'..', and optimizing function f, which satisfy the
conditions of the algorithm A. If is the final
approximate pool associated with node N when A
halts, then PN = V N E N,

Theorem Z thus relates the final output of the
algorithm to the intuitive results which were de-
veloped earlier. The proof of Theorem Z is given
in Appendix B.

An interesting side-effect of Theorem Z is
that the order of choice of elements from L in step
A3 is arbitrary, as given in the following corol-
lary.

Corollary 1. The final pool PN associated
with each node N E N upon termination of the algo-
rithm A is uniquely-determined, independent of the
order of choice of L' from L in step A3.
Proof. This corollary follows immediately, since
the proof of Theorem Z in Appendix B is independent
of the choice of L'e

Since the choice of L' from L in step A3 is
arbitrary, it is interesting to investigate the
effects of the selection criteria upon the algo-
rithm. The number of steps to the final solution
is clearly affected by this choice. No selection
method has been established, however, to maximize
this convergence rate. One might also notice that
by treating accesses to L as critical sections in
steps A3 and AS, the elements of L can be processed
in parallel. That is, independent processes can be
started in step A3 to analyze all elements of L.

It is important to note at this point that the
algorithm A allows one to ignore the global analy-
sis, and concentrate upon development of straight-
line code optimizing functions. That is, if an
optimizing function f can be constructed for opti-
mizing a sequence of code containing no alternative
branches, then the algorithm A can be invoked to
perform the branch analysis, as long as f satisfies
the conditions of the algorithm.

4. COMMON SUBEXPRESSION ELIMINATION

Global common subexpression elimination in-
volves the analysis of a program's structure in
order to detect and eliminate calculations of re-
dundant expressions. A fundamental assumption is
that it requires less execution time to store the
result of a previous computation and load this
value when the redundant expression is encountered.

As an example, consider the simple sequence of
expressions:

••. r:=a+b; .•. r+x ... (a+b)+x ..•

which could occur as part of an ALGOL 60 program.
Figure 2 shows this sequence written as a directed
graph. Note that the redundant expression (a+b)
at node V is easily recognized. The entire expres-
sion (a+b)+x at node v is redundant, however, since
r has the same value as a+b at node U, and r+x is
computed at node U ahead of node V. It is only
necessary to describe an optimizing function f
which detects this situation for straight-line
code; the algorithm A will make the function glob-
ally applicable.

Figure 2. An acyclic program graph representing
a simple computation sequence.

A convenient representation for the optimizing
pool in the case of common subexpression elimina-
tion is a partition of a set of expressions. The
expressions in the partition at a particular node
are those which occur before the node is encoun-
tered at execution-time.

The optimizing function for common sub-
expression elimination manipulates the equiva-
lence classes of the partition. Two expressions
are placed into the same class of the partition
if they are known to have equivalent values, Con-
sidering Figure 2, for example, the set of expres-
sions which are evaluated before node T is encoun-
tered is empty; thus, PT = 0. The expressions
evaluated before node U are exactly those which
occur at node T, including partial computations.
The set of (partial) computations at node T is
{a,b,a+b,r}. Since r takes the value of a+b at
node T, r is known to be equivalent to a+b.
Thus, P ={albla+b,r}, where "I" separates the

classes of the pool. Similarly,
Pv = {albla+b,rlxlr+x} and Pw =
{albla+b,rlxlr+xl (a+b)+x}. The expression
a+b at node V is redundant since a+b is in the
pool Pv·

Note, however, that the redundant expression
(a+b)+x at node V is not readily detected. This
is due to the fact that r+x was computed at node U
and, as noted above, the evaluation of r+x is the
same as evaluation of (a+b)+x at node U. In order
to account for this in the output optimizing pool,
(a+b)+x is added to the same class as r+x. Thus,
Pv becomes

{albla+b,rlxlr+x,(a+b)+x}.

This process is called "structuring" an optimizing

198

pool. Structuring consists of adding any expres-
sions to the partition which have operands equiva-
lent to the one which occurs at the node being
considered. The entire expression (a+b)+x at node
V is then found to be redundant since the struc-
tured pool Pv contains a class with (a+b)+x.

An optimizing function f1 (N,P) for common sub-
expression elimination can now be informally stated.

1. Consider each partial computation e in the ex-
pression at node N E N.

2. If the computation e is in a class of P then e
is redundant; otherwise

3. create a new class in P containing e and add
all (partial) computations which occur in the
program graph and which have operands equiva-
lent toe (i.e., structure the pool P).

4. If N contains an assignment d:=e, remove from
P all expressions containing d as a subexpres-
sion. For each expression e' in P containing
e as a subexpression, create e'' with d sub-
stituted fore, and place e'' in the class of e'.

The meet operation A of the algorithm A must
be defined for common subexpression elimination.
Since the optimizing pools in P' are partitions of
expressions, the natural interpretation is as
intersection by classes, denoted by n. That is,
given P1 ,P2 E f', P = P1 n P2 is defined as follows.

Let up n up c
p E pl p E P2

and P (c) P
1

(c) n P
2

(c) Ve EC.

C is the set of expressions common to both P1 and
P2 , while P1 (c) and P2 (c) are the classes of c in
P1 and P2, respectively. Thus, the class of each
c E C in the new partition P is derived from P1
and P2 by intersecting the classes P1 (c) and P2 (c).
For example, if P = {a,bld,e,f} and P2 =
{a,cld,f,g} then t = {a,d,f} and P1 * p2 = {ald,f},

It is easily shown that n has the properties
required of the meet operation; hence, a "refine-
ment" relation is defined:

That is, Pl P2 if and only if P1 is a refinement
of P2 • The refinement relation provides the order-
ing required on the set f' for the algorithm A.

The function f 1 can be stated formally, and
shown to have the homomorphism property required
by the global analysis algorithm [33]:

Before considering an example of the use of
f 1 with the algorithm A, the function fl is extend-
ed to combine constant propagation with common sub-
expression elimination.

5. CONSTANT PROPAGATION AND COMMON SUBEXPRESSION
ELIMINATION

The common subexpression elimination optimizing
function f 1 of Section 4 can easily be extended to
include constant propagation. Consider, for
example, the following segment of an ALGOL 60 pro-
gram:

Figure 3
segment.
PB = 0.
before,

u:=20;
y:=40;

v:=30; ••• u+v ••• x:=lO;
x+y ••• y-x •••

shows a program graph representing this
Assume the entry pool is empty; i.e.,

The analysis proceeds up to node E as
resulting in

PE = {u,zolv,30}.

Note that u and v are both propagated constants in
PE since they are both in classes containing con-
stants. If the expression u+v at node E is pro-
cessed as in f 1 , the output pool is

{u,20lv,30lu+v}.

Noting that u and v are in classes with constants,
then u+v must be the propagated constant 20+30 = SO.
Hence, the constant SO is placed into the class of
u+v in the resulting partition. Thus,

PF= {u,20lv,30lu+v,SO}.

The analysis continues as before up to node H,
resulting in

PH= {u,20lv,30\u+v,SOlx,lOly,40}.

In the case of the f 1 optimizing function, the
expression x+y at node H is placed into a distinct
class. The operands x and y, however, are propa-
gated constants since they are equivalent to 10
and 40, respectively. The expression x+y is
equivalent to SO which is already in the par-
tition. Thus, x+y is added to the class of SO,
resulting in

PI = {u,20\v,30lu+v,SO,x+ylx,10ly,40}.

Similarly, the output pool from node I is

{u,20lv,30,y-x\u+v,SO,x+y\x,10\y,40}.

The analysis above depends upon the ability
to recognize certain expressions as constants and
the ability to compute the constant value of an
expression when the operands are all propagated
constants. It is also implicit that no two
differing constants are in the same class.

An optimizing function f 2 which combines
constant propagation with common subexpression
elimination can be constructed from f 1 by altering
step (3) follows:

3a. create a new class in P containing e and add
all (partial) computations which occur in the
program graph and which have operands equiva-
lent to those of e (structure the pool as
before).

3b. If e does not evaluate to a constant value
based constant operands, then
no further processing is required (same as
step (3) of f1); otherwise let z be the

199

constant value of e. If z is already in the
tion P then combine the class of z with the class
of e in the resulting partition. If z is not in
the partition P, then add z to the class of e. The
expression e becomes a propagated constant in either
case.

The function f 2 is stated formally and its
properties are investigated elsewhere [33].

IQ= {u,20} 0$
'F= {u,20lv,30lu+v,50}

fG= {u,2olv,30ju+v,50jx,IO} G$
JH= {u,20jv,30lu+v,50jx,IOjy,40} H$

FJ • {u,20lv,30lu+v,50,x+ylx,IOly,40} i<tv
Figure 3. A program graph demonstrating the
effects of constant propagation.

6. EXPRESSION OPTIMIZATION

Expression optimization, as defined earlier,
includes common subexpression elimination, constant
propagation, and register optimization. The first
two forms of optimization are covered by the f 2
optimizing function; only register optimization
needs to be considered. It will be shown below
that fz also provides a simple form of register
optimization.

In general, global register optimization in-
volves the assignment of high speed registers
(accumulators and index registers) throughout a
program in such a manner that the number of store-
fetch sequences between the high-speed registers
and central memory is minimized. The store-fetch
sequences arise in two ways. The first form in-
volves redundant fetches from memory. Consider
the sequence of expressions

a:=b+c; d:=a+e;

for example. A straight-forward translation of
these statements for a machine with multiple
general-purpose registers might be

r 1 :=b; rz:=c; rl:=rl+r2; a:=r1 ;

r 1 :=a; rz:=e; r1:=r1+rz; d:=r1 •

Note, however, that the operation r 1 :=a is not
necessary since r 1 contains the value of the vari-
able a hefore the operation. McKeeman [38] dis-
cusses a technique called "peephole optimization"
which eliminates these redundant fetches within a
basic block.

Figure 4 shows a program corresponding to the
register operations above. The f 2 optimizing func-
tion is applied to each successive node in the
graph, resulting in the bptimizing pools shown in
the Figure. In particular, note that

The operation at node E assigns the variable a to
the register r 1 . Since a is already in the class
of r 1 , however, the operation is redundant and can
be eliminated. Hence, the f 2 optimizing function
can be used to generalize peephole optimization.
Further, the algorithm A extends f 2 to allow global
elimination of redundant register load operations.

The second source of store-fetch sequences
arises when registers are in use and must be
released temporarily for another purpose. The
contents of the busy register is stored into a
central memory location and restored again at a
later point in the program. An optimal register
allocation scheme would minimize the number of
temporary stores. This form of register optimiza-
tion has been treated on a local basis, including
algorithms which arrange arithmetic computations
in order to reduce the total number of registers
required in the evaluation [5,27,36,39,43,45,46].
Global register allocation has also been formulated
as an integer programming problem by Day (14],
given that register interference and cost of data
displacement from registers is known. No complete
solution to the global register allocation problem

200

is known by the author at this time.

A solution to the global register allocation
problem will be aided by the analysis of "live"
and "dead" variables at each node in the program
graph. A variable v is live at a node N if v could
possibly be referenced in an expression subsequent
to node N. The variable v is dead otherwise. Re-
cent work has been done by Kennedy [32] using in-
terval analysis techniques to detect live and dead
variables on a global basis.

An optimizing function f 3 can be constructed
which produces a set of live expressions at each
node in the graph. The detection of live expres-
sions requires the analysis to proceed from the
end of the program toward the beginning. Figure
5 shows the graph of Figure 4 with the direction
of the edges reversed. The live expressions at
the beginning of the graph correspond to the live
expressions at the end of program execution; hence,
PH = W (there are no live expressions at the end of
execution). The expression d:=r1 at node H refers
to the expression r 1. Thus, r 1 is live ahead of
node H. This fact is recorded by including r 1
in PG,

Since r 1 is assigned a new value at node G, it be-
comes a dead expression, but, since r 1 is also
involved in the expression r 1+rz, it immediately
becomes a live expression again. Thus,

The analysis continues, producing the optimizing
pools associated with each node in Figure 5. The
expressions which are live at node C, for example,

The optimizing function f 3 (N,P) which provides
live expression analysis can be informally stated
as follows:

1. If the expression at node N involves an assign-
ment to a variable, let d be the destination
of the assignment; set P + P - {eld is a sub-
expression in e}(d and all expressions con-
taining d become dead expressions).

2. Consider each partial computation e at node N.
Set P + P u {e} (e becomes a live expression).
The value of f 3 (N,P) is the altered value of P.

The algorithm A can then be applied to the
reversed program graph using the optimizing func-
tion f 3• The exit nodes of the original graph be-
come the entry nodes of the reversed graph. In
addition, the meet operation of the algorithm A is
the set union operation u. The union operation
induces the partial ordering given by

where !'.. is the set of (partial) computations which
occur in the program graph. Note that 0 = P' and
l = in this case. Thus, all initial approximate
pools in the algorithm A are set to 0.

There is a simple generalization of detection
of live expressions to "minimum distance analysis"
where each live expression is accompanied by the
minimum distance to an occurrence of the expres-
sion. The optimizing pools in this case are sets
of ordered pairs (e,d), where e is a live expres-
sion and d is the minimum distance (in program
steps) to an occurrence of e. The optimizing
function extends live expression analysis by
tabulating a distance measure as the live expres-
sion analysis proceeds. In addition, the meet
operation consists of both set union and a com-
parison of the distances corresponding to each
live expression. This minimum distance infor-
mation can then be used in the register replace-
ment decision: whenever all registers are busy
and contain live expressions, the register con-
taining the live expression with the largest
distance to its occurrence is displaced.

Examples are given in the section which
follows demonstrating the f 2 and f 3 optimizing
functions when used in conjunction with' the
algorithm A.

7. A TABULAR FORM FOR THE ALGORITHM A

The processing of the algorithm A can be
expressed in a tabular form. The tabular form
allows presentation of a number of examples, and
provides an intuitive basis for implementing the
optimizing techniques. In particular, this form
allows representation of the approximate optimizing
pools at each node, the elements of L, and the node
traversing decision. As shown in Table I, the
column labeled "N" contains the current node being
processed (i.e., the Nin L' = (N,Pj) in step AS).
The column labeled "PN + PN " P. '' shows the change
in the approximate pool at node1N when the node is
traversed in step AS. The column marked "f (N,PN)"
contains the output optimizing pool produced by
traversing the node N (the set braces are omitted
for convenience of notation). The last column,

201

marked "L," represents the set of nodes remaining
to be prncessed (the set L of the algorithm A).

Paraphrasing the algorithm A, the tabular form
is processed as follows.

1.

2.

3.

4.

List all entry nodes and entry pools vertically
in the right-hand columns, with entry node ei
in column L, and associated entry pool xi in
column f(N,PN). Normally, there is only one
entry node, with the null set as an entry pool.

Select an L' from L as follows. Choose any
node from column L, say node N. If there are
no elements remaining in L then the algorithm
halts. The line where N was added to L con-
tains the associated output pool Pi in the
column f(N,PN). Eliminate L' from L by cross-
ing out N from column L.
Using L' = (N,Pi) from step 2, scan the table
from the bottom upward to the first occurrence
of node N in column N. The current approximate
pool PN is adjacent in the column PN + PN" P .•
If node N has not appeared in column N, then 1

assume the first approximation to PN = .!. (and
hence, PN +.!.A Pi= Pi).

:;ite
the new approximate pool determined by PN" Pi
in the column marked PN + PN A Pi. Compute
the output pool based upon the new approximate
pool PN in the column f(N,PN)' and write the
names of the immediate successors of N in
column L. Go back to step 2.

Upon termination of this algorithm, the table
is scanned from bottom to top; the first occurrence
of each node N E N is circled. The pool associated
with each circled-node in column PN + PN A Pi is
the final pool for that node. Any nodes of N which
do not appear in column N cannot be reached from
an entry node, and can be eliminated from the pro-
gram graph.

Table I shows the analysis of the program
graph given in Figure 1, using the fz optimizing
function. The entry node set for this analysis is
e. = {(A,0)}, as before. L is treated as a stack;
elements are removed from the lower right position
of column L in step 2. After processing the graph,
the final pools at each node are listed in the
table opposite the circled nodes. The final pool
at node E, for example, is

PE= {a,llb,2ld,a+b,3}.
The final pools determined by the algorithm corre-
spond to those determined previously in Section 2.

TABLE I
step N PN-PNAP1 f{N,PN) L

l ¢ /..
2 ® ¢ a,l
3 @ a,l a,l lc,O ¢
4 c a,l/c,0 a,Jic,O/b,2 p
5 D a,l/c,O/b,2 a ,l / c, O /b, 2 /d,a+b, 3 t
6 E a,!/c,0/b,2 /d,a+b,3 a ,l /c, O /b, 2 ,e, bl-c Jct ,a+b, 3 t
7 F a ,I Jc, 0 lb. 2 ,s ,b+.c jd .a+b. 3 a,l/b.2,e /d,a+b,3 /c,4 ¢
8 © a,l a,l/b,2 lil
9 @ a,l/b,2 a,l /b,2 t

10 ® a,l /b,2 /d,a+b,3 a ,l /b, 2 /d ,a+b, 3 /bl-c, e ;
11 ® a,l/b,2 a,l/b,2/c,4 <t

Figure 6 shows a program graph with two paral-
lel feedback loops. The analysis of this program
graph is given in Table II, using the f 2 optimizing
function. Note that in step (8),

P = {lOJyJx,5,u}.
F

Applying f 2 (F ,PF), the resulting output pool is

{lOJyJx,5,uJu·y,x·y}.

The expression x•y is placed into the class of u•y
when the partition is structured, That is, x·y is
an expression which occurs in the program, and x•y
is operand equivalent to u'y. Thus, x•y must be
added to the class of u•y in the output pool. The
redundant expression x'y is detected at node G
since the final pool PG contains x•y.

Figure 6. A program graph with two parallel
feedback loops.

TABLE II
step N PN- PNA Pt f(N,PN) L

J ¢ /..
z ® ¢ x,Jo ;,
3 ® x,10 x,JO fy fx·y <t
4 c x,JOfyfx•y x,JO fy fx•y p,¢
5 G x,JO[yfx·y x,JO fy fx•y <t
6 D x,!Ofyfx•y JO fy fx•y fx, 5 t
7 ® JOfyfx,5 !Ofyfx,5,u ;
8 ® 10 [y [x, 5,u JO fy fx,5,u [u·y ,X•Y <t
9 © x [10 fy fx•Y x fJO fy fx•y jll,¢

10 @ xf!Ofyfx•y x [10 fy fx.y <t
II @ xf!Ofy fx•Y x,5 fJO fy ;.

Global live expression analysis can be per-
formed on the program graph of Figure 6 by re-
versing the graph, as shown in Figure 7. Given
that node C is the exit node of the original graph,
node C becomes the entry node of the reversed
graph. {(C,0)} in the analysis shown in
Table III, using the f 3 optimizing function. For
example, the final pool

PA= {x,y,x·y}

y, and x•y are
in the original

Figure 7. The reversed graph corresponding to
the program graph of Figure 6.

TABLE III
step N PN-PNA Pt f(N,PN) L

202

I ¢ <t
z c ¢ x ;,,f,¢
3 G x x,y,x•y ¢
4 © x,y,x•y x,y,x•y ;,,;,¢
5 x,y,x•y x,y,x•y ¢
6 ® x,y,x•y x,y,x.y,u,u•y t
7 ® x,y,x•y,u,u•y x,y,x•y jll
8 @ x,y,x•y y ¢
9 x,y,x•y x,y,X•Y /..
10 x,y,x•y y,JO

This tabular form can be used for processing
any program graph using an optimizing function
which satisfies the conditions of the algorithm A.

8. IMPLEMENTATION NOTES

Implementation of the above optimizing tech-
niques in a practical compiler is considered below.
In particular, the optimizer operates upon an in-
termediate form of the program, such as tree struc-
tures or Polish [24], augmented by branching infor-
mation. The control flow analyzer accepts the in-
termediate form and calls the various optimizing
functions to process each basic block, roughly
paralleling the tabular form given previously. A
single stack can be used to list uninvestigated
basic blocks, corresponding to "L" of the tabular
form. Pool information must be maintained for
each basic block corresponding to the "P + PN A Pi"
column, but may be discarded and if the
node is encountered again in the analysis (i.e.,
the node reappears in column "N"). The output
optimizing pools found in column "f(N,PN)," however,
can be intersected with all immediate successors
as they are produced, and thus need not be main-
tained during analysis. The final optimizing pools
(determined by "scanning" the tabular form) are
simply the current pools attached to each basic
block.

The optimizing functions and corresponding
meet operations are generally simple to implement
using bit strings for sets, and lists for ordered
pairs. Common subexpression elimination, however,
requires further consideration since direct repre-
sentation and manipulation of structured partitions
is particularly unwieldy.

One approach to handling structured partitions
allows direct representation of the classes, but
limits the number of expressions which appear. A
list of all (sub)expressions is constructed by
prescanning the program (an optimizing function
which always returns 0 is useful for this scan).
When a partition is structured, only those expres-
sions which occur in the expression list are in-
cluded. The set of eligible expressions can be
further reduced by first performing live expression
analysis. The expressions which appear in a parti-
tion are limited to the live expressions at the
point the partition is generated, The use of live
expression analysis before common subexpression
elimination will generally reduce partition size
and improve the convergence rate of the analysis
algorithm.

A second approach to representation of struc-
tured partitions involves the assignment of "value

numbers" to the expressions in the optimizing pools
[13,24,33,34]. A value number is a unique integer
assigned to all elements of the same class. The
sequence of statements

a:=b+c; d:=b; e:=a;
results in the structured partition

P1 = { b,d I c I b+c,d+c,a,e }•
Next, assign the value numbers 1, 2, and 3 to the
three classes, and replace the expressions b+c and
d+c by (1)+(2), representing the addition of elements
of class (1) and class (2). P1 can now be written
as P = { b,d J c [(1)+(2) ,a,e }·

2 (1) (2) (3)

Similarly, the sequence of assignments
a:=d; b:=c; e:=b+c;

produces the structured partition represented by

P2 = {a,d[b,cf (5)+(5),e }·
(4) (5) (6)

which expands to
P2 = {a,dfb,cf b+c,b+b,c+b,c+c,e}

Thus, the assignment of value numbers provides a
data structure whose size is linear in the number
of expressions in the basic block. In addition,
the value number representation is particularly
easy to construct and use in the detection of
common subexpressions.

Given two partitions Pi and P2 in value number
form, the meet operation P = P1 n P2 can be itera-
tively computed. The computation proceeds as
follows. Construct a list C consisting of the
number of occurrences of each value number in P1 .
The elements of C thus provide a count of the
number of elements in each class of P1 • This
count is decremented whenever an element of the
class is processed, until the count goes to zero
indicating the entire class is exhausted.

A list R is also maintained which gives a
mapping of the class numbers in P1 and P2 to the
resulting class numbers in P. The elements of R
are of the form r(r1 ,r2), indicating that value
number r 1 from P 1 and value number r 2 from P2 map
to value number r in the resulting partition P.
R is built during the construction of P.

The elements of P1 are scanned and processed
until the classes of P1 are exhausted. Suppose q
is an identifier in P1 with value number v1 • The
count corresponding to v1 in the list C is first
decremented. If q does not occur in P2 then the
next element of P1 is selected. Otherwise, let v2
be the value number corresponding to q in P2• R
is scanned for an element v(v1 ,v2); if not found,
a new value number v is assigned, and v(v1,v2) is
added to R. The identifier q is placed into P
with value number v.

If the element selected from P1 is not an
identifier, then it is an expression of the form
(n1) Q (m1) with value number v1 , where n1 and m1 are value numbers in P1 (assuming all operations
0 are binary). If the count of either class (n1)
or (m) is non-zero in C, defray the processing of
this otherwise, decrement the count for
class (v) in C, as above. Examine R for pairs of

1

203

elements n(n1 ,n2) and m(m1 ,m2) where n2 and m2 are
value numbers in P2 • For each such pair, search
Pz for an entry (n2) Q (m2). If found, let v2 be
the value number of this matched expression. Scan
R for an element of the form v(v1 ,v2), and make a
new entry if not found, as above. The expression
(n) Q (m) with value number v is then placed into
the intersection P.

As an example, consider the class intersection
of the partitions P1 and P2 given previously. These
partitions are represented by the value number tables

P1 P2
val/I

b (1) a
d (1) d
c (2) b

(1)+(2) (3) c
a (3) (5)+(5)
e (3) e

val/I
(4)
(4)
(5)
(5)
(6)
(6)

The class count list C for the partition P1 is
initially

val/I
(1)
(2)
(3)

count
-2-

1
3

The identifiers b, d, and c are processed first,
reducing the class counts for (1) and (2) to zero
in C. The class mapping list at this point is

R = {7(1,5), 8(1,4), 9(2,5)}

The identifiers b, d, and c are placed into P with
value numbers 7, 8, and 9, respectively. The ex-
pression (1)+(2) with value number (3) is then
processed from P1 , since the class counts for both
(1) and (2) are zero. Based upon the mappings in
R, P2 is searched for an occurrence of (5)+(5) or
(4)+(5). Since (5)+(5) occurs in P2 with value
number (6), R is scanned for an element of the form
v(3,6), and, since no such element is found, 10(3,6)
is added to R. The expression (7)+(9) with value
number (10) is included in P. The identifier a is
then processed, resulting in another mapping 11(3,4)
in R; a is added to P with value number (11).
nally,.the identifier e from P1 with value number
(3) is processed. A match is found in P2 with
value number (6). Since the element 10(3,6) is
already in R, e is added to P with value number
(10). The final value of the class list is

R = {7(1,5), 8(1,4), 9(2,S), 10(3,6), 11(3,4)}

which can now be discarded. The value of the re-
sulting partition P is

vallf
b (7)
d (8)
c (9)

(7)+(9) (10)
a (11)
e (10)

which represents the structured partition

{b[d[cJb+c,eJa}

Note that the predicate P2 2 P1 is easily computed

during this process.

The control flow analysis algorithm has been
implemented as a general-punpose optimizing module,
including several optimizing functions. The imple-
mentation is described in some detail elsewhere
[33].

9. CONCLUSIONS

An algorithm has been presented which, in
conjunction with various optimizing functions,
provides global program optimization, Optimizing
functions have been described which provide con-
stant propagation, common subexpression elimina-
tion, and a degree of register optimization.

The functions which have been given by no
means exhaust those which are useful for optimiza-
tion. Simplifying formal identities such as o+x =
o+x = x can be incorporated to further coalesce
equivalence classes at each application of the f 2
optimizing function. In addition, it may be pos-
sible to develop functions which extend live ex-
pression analysis to completely solve the global
register allocation problem.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

REFERENCES

Aho, A., Sethi, R., and Ullman, J. A formal
approach to code optimization. Proceedings
of a Symposium on Compiler Optimization.
University of Illinois at Urbana-Champaign,
July, 1970.

Allen, F. Program optimization. In Annual
Review in Automatic Programming, Pergamon
Press, 5(1969), 239-307.

A basis for program optimization. IFIP
Congress 71, Ljubljana, August, 1971, 64-68.

Control flow analysis. Proceedings of a
Symposium on Compiler Optimization, Univer-
sity of Illinois at Urbana-Champaign, July,
1970.

Anderson, J. A note on some compiling algo-
rithms. Comm. ACM 7, 3 (March 1964),
149-150.

Arden, B. Galler, B., and Graham, R. An
algorithm for translating boolean expres-
sions. Jour. ACM 9, 2(April 1962), 222-239.

Bachmann, P. A contribution to the problem of
the optimization of programs. IFIP Congress
71, Ljubljana, August, 1971, 74-78.

Ballard, A., and Tsichritzis, D. Transforma-
tions of programs. IFIP Congress 71,
Ljubljana, August, 1971, 89-93.

Breuer, M. Generation of optimal code for ex-
pressions via factorization, Comm. ACM 12,
6(June 1970), 333-340.

Busam, V., and Englund, D. Optimization of
expressions in FORTRAN. Comm. ACM 12,
12(Dec. 1969), 666-674.

Cocke, J. Global common subexpression elimi-
nation. Proceedings of a Sybposium on Com-
piler Optimization. University of Illinois
at Urbana-Champaign, July, 1970.

204

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

, and Miller, R. Some analysis techniques
for optimizing computer programs. Proc.
Second International Conference of System
Sciences, Hawaii, January, 1969, 143-146.

---,and Schwartz, J.
and Their Compilers:
Courant Institute of
New York University,

Programming Languages
Preliminary

Mathematical Sciences,
1970.

Day, w. Compiler assignment of data items to
registers. IBM Systems Journal, 8, 4(1970),
281-317.

Earnest, C., Balke, K., and Anderson, J.
Analysis of graphs by ordering nodes. Jour.
ACM 19, l(Jan; 1972), 23-42.

Elson, M., and Rake, S. Code generation
technique for large language compilers.
IBM Systems Journal 3(1970), 166-188.

Fateman, R. Optimal code for serial and
parallel computation. Comm. ACM 12, 12(Dec.
1969), 694-695.

Finkelstein, M. A compiler optimization
technique. The Computer Review (Feb. 1968),
22-25.

Floyd, R. An algorithm for coding efficient
arithmetic operations. Comm. ACM 4, l(Jan.
1961), 42-51.

Frailey, D. Expression Optimization using
unary complement operators. Proceedings of
a Symposium on Compiler Optimization, Uni-
versity of Illinois at Urbana-Champaign,
July, 1970.

---, A study of optimization using a general
purpose optimizer. (PhD Thesis) Purdue
University, Lafayette, Ind., January 1971.

Freiburghouse, R. The MULTICS PL/I compiler.
AFIPS Conf. Proc. FJCC (1969), 187-199.

Gear, C. High speed compilation of efficient
object code. Comm. ACM 8, 8(Aug. 1965),
483-488.

Gries, D. Compiler Construction for Digital
Computers. John Wiley and Sons, Inc., New
York, 1971.

Hill, v., Langmaack, H., Schwartz, H., and
Seegumuller, G. Efficient handling of sub-
scripted variables in ALGOL-60 compilers.
Proc. Symbolic Languages in Data Processing,
Gordon and Breach, New York, 1962, 331-340.

Hopkins, M. An optimizing compiler design.
IFIP Congress 71, Ljubljana, August, 1971,
69-73.

Horowitz, L., Karp, R., Miller, R., and
Winograd, S. Index register allocation.
Jour. ACM 13, l(Jan. 1966), 43-61.

Huskey, H., and Wattenberg, W. Compiling
techniques for boolean expressions and
conditional statements in ALGOL-60. Comm.
ACM 4, l(Jan. 1961), 70-75.

Huskey, H. Compiling techniques for algebraic
expressions. Computer Journal 4, 4(April
1961), 10-19.

30. Huxtable, D. On writing an optimizing trans-
lator for ALGOL-60. In Introduction to
System Programming, Academic Press, Inc.,
New York, 1964.

31. IBM System/360 Operating System, FORTRAN IV
(G and H) Programmer's Guide. C28-6817-l,
International Business Machines, 1967,
174-179.

32.

33.

Kennedy, K. A global flow analysis algorithm.
Intern. J. of Computer Mathematics, Section
A, Vol. 3, 1971, S-lS.

Kildall, G. Global expression optimization
during compilation. Technical Report No.
TR# 72-06-02, University of Washington Com-
puter Science Group, University of Washington,
Seattle, Washington, June, 1972.

34. --- A code synthesis filter for basic block
optimization. Technical Report No. TR# 72-
01-01, University of Washington Computer
Science Group, University of Washington,
Seattle, Washington, January, 1972.

3S. Lowry, E., and Medlock, C. Object code opti-
mization. Comm. ACM 12, l(Jan. 1969), 13-22.

36. Luccio, F. A comment on index register allo-
cation. Comm. ACM 10,9 (Sept. 1967), S72-
S72-S74.

37. Maurer, W. Programming-An Introduction _!:2.
Computer Language Technique. Holden-Day,
San Francisco, 1968, 202-203.

38. McKeeman, W. Peephole optimization. Comm.

39.

40.

41.

42.

ACM 8, 7(July 196S), 443-444.
Nakata, I. On compiling algorithms for
arithmetic expressions. Comm. ACM 19,
8(Aug. 1967), 492-494.

Nievergelt, J. On the automatic simpli-
fication of computer programs. Comm.
ACM 8, 6(June 196S), 366-370.

Painter, J. Compiler effectiveness. Pro-
ceedings of a Symposium on Compiler
Optimization, University of Illinois at
Urbana-Champaign, July, 1970.

Randell, B., and Russell, L. ALGOL 60
Implementation. Academic Press, In-;;-:-,
New York, 1964.

43. Redziejowski, R. On arithmetic expressions
and trees. Comm. ACM 12, 2(Feb. 1969),
81-84.

44. Ryan, J. A direction-independent algorithm for
determining the forward and backward compute
points for a term or subscript during com-
pilation. Computer Journal 9, 2(Aug. 1966),
157-160.

4S. Schnieder, V. On the number of registers
needed to evaluate arithmetic expressions.
BIT 11(1971), 84-93.

46. Sethi, R., and Ullman, J. The generation of
optimal code for arithmetic expressions.
Jour. ACM 17, 4(0ct. 1970), 71S-728.

47. Wagner, R. Some techniques for algebraic
optimization with application to matrix
arithmetic expressions. Thesis, Carnegie-
Mellon University, June, 1968.

205

48. Yershov, A. On programming of arithmetic
operations. Comm. ACM 1, 8(Aug. 19S8), 3-6.

49. --- ALPHA-an automatic programming system of
high efficiency. Jour. ACM 13, l(Jan. 1966),
17-24.

APPENDIX A
1 Al: L = {(A,0)}
2

3

4

s

A3:
A4:

AS:

A3:
6 AS:
7 A3:
8 AS:

9 A3:
10 AS:

11 A3:

L' (A,0), L

P N PA = l_, Pi 0 ' PA f, Pi'
PA+ PA A pi =pi = 0

PA 0, L = {(B,{(a,l)})}

L' (B,{(a,l)}),L=0
PB {(a,l)}, L = {(C,{(a,l),(c,O)})}
L' (C,{(a,l),(c,O)}), L = 0
PC {(a,l),(c,O)},
L = {(D,{(a,l),(c,O),(b,2)})}
L' (D,{ (a,l), (c,O), (b,2)}), L

PD {(a,l),(c,O),(b,2)},
L = {(E,{(a,l),(c,O),(b,2),(d,3)})}
L' = (E,{(a,l),(c,O),(b,2),(d,3)}), L

12 AS: PE {(a,l),(c,O),(b,2),(d,3)},
L = {(F,{(a,l),(c,O),(b,2),(d,3),(e,2)})}

13 A3: L' = (F,{(a,l),(c,O),(b,2),(d,3),(e,2)}),
L = 0

14 AS:

lS A3:

16 AS:
17 A3:
18 AS:

19 A3:
20 AS:

PF= {(a,l),(c,O),(b,2),(d,3),(e,2)},
L = {(C,{(a,l),(c,4),(b,2),(d,3),(e,2)})}
L' = (C,{(a,l),(c,4),(b,2),(d,3),(e,2)}),
L = 0
Pc {(a,l)}, L = {(D,{(a,l),(b,2)})}
L' (D,{ (a,l), (b,2)}), L = 0
PD {(a,l),(b,2)},
L = {(E,{(a,l),(b,2),(d,3)})}
L' (E,{(a,l),(b,2),(d,3)}), L
PE {(a,l),(b,2),(d,3)},
L = {(F,{(a,l),(b,2),(d,3)})}

21 A3: L' (F,{(a,l),(b,2),(d,3)}), L
22 AS: PF {(a,l),(b,2),(d,3)},

L = {(C,{(a,l),(b,2),(d,3),(c,4)})}
23 A3: L' = (C,{(a,l),(b,2),(d,3),(c,4)}), halt.

APPENDIX B
The proof of Theorem 2 is given below. First

note that given a program graph G with multiple
entry nodes, an augmented graph G' can be con-
structed with only one entry node with entry pool
0. The construction is as follows. Let e=
te1 ,e2, ... ek} be the entry node set and .S: =
{ (e1 ,x1),(e2,x4), ... , (ek,xk)} be the entry pool
set corresponding to a particular analysis. Con-
sider the augmented graph G' = where

E' = E u

{(v,v1),(v,v2), ... ,(v,vk),(v1 ,e1), .. ,(vk,ek)}.

The augmented graph G' has a single entry v
and entry node set e ' = { v}. The functional value
of f is defined for these nodes as

f(v,P) = Q VP E !'._, and

Hence, the analysis proceeds as if there is only a
?ingle entry node with entry pool Q; i.e.,

= { (v,.Q_)}.

:· If = f(N,Pl) A f(N,P2) then
P1-P2 -> f(N,P1)-f(N,P2). VN E P1,P2 E !'..·

Proof. The proof is immediate since P sP 2 =>
f(N,P 1AP2) = f(N,P 1) =(f(N,P1) Af (N,P 2J)=>
f(N,P 1) s f(N,P2) a
Lemma 2. Let x: !'..· if f(N,PlAPz) =
f(N,P1)Af(N,Pz) VN E P1 ,P 2 E !'._then

f (N, /\x - /\
X) - xf(N,x).

XE XE

Proof. The proof proceeds by induction on the
cardinalilj(vof X, denoted by C(X). If C(X) = 1
then = f(N,x) and the lemma is trivially
true. If C(X) = k, k>l, assume lemma is true
for all < k. Let yEX and X' = X -{y}.

f(N,/\Xx) = f(N,yA(/\xx,)) = f(N,y)Af(N,/\xx,)
XE XE XE

f(N,y)A(/\X,f(N,x)) = A f(N,x) e XE XEX
Proof of Theorem 2. It will first be shown by
induction on the path length that

Consider the following proposition on n:
PN s f(pn,f(pn-l''''•f(p1 ,Q)) ...) for all

final pools PN and paths of length n from the entry
node Pi with entry pool Q to node N, VN E N.

The trivial case is easily proved. The only
node which can be reached by a path of length 0
from the entry node p1 is p1 itself. Hence, it is
only necessary to show that P s 0. This is P1 -
immediate, however, since (p1 ,Q) is initially
placed into L in step Al, ann extracted in step A3
as L' = (p1 ,Q). But, Pp

1
is initially l, and hence

p i Pi= 0 in step A4. Thus, PPl + P A 0 = Q
Pl - Pl

in step AS. Thus, it follows that P Q s .Q_. Pl
Suppose the proposition is true for all n<k,
for k>O. That is, PN s f(pn 1 ... ,f(p11Q)) ...)
for all paths of length less than k from pl
to node N, for each node N E N.

Let KE path (P1 , ... ,pk 1K) of length k. It
will be shown that PK s f(pk 1f(pk-l•···1f(p11Q)) •••).

Consider each immediate predecessor in I-lrK). Let

206

pk denote one such predecessor, and let T =
f(pk-l''''•f(p1 ,Q)) .•.). By inductive hypothesis,
PPk s T. It will be shown that PK s f(pk 1T).

Since PPk is the final approximation to the
pool at Pk• must have been added to L
in step AS. But, Pp - T => f(pk,P) s f (pk 1T) by
Lemma 1. The pair (f,f(pk, P)) be processed

Pk
in step A3 before the algorithm halts. Thus, either
PKsf(pk,PPk) in step A4, or PK+-PK A f(pk,PPk)'
In either case, PK s f(pk,PPk). But,

PK s f(pk,Pp) s f(pk 1T) => PK s f(pk 1T)
k

=>PK s f(pk 1f(pk_1 , ... ,f(pl'Q)) ...).

Thus, since the proposition holds for paths of
length k, it follows by induction that the proposi-
tion is true for all paths from the entry node to
node N, for all N E

The following claim will be proved in order to
show that XN s PN for all N E at any point in
the processing of G by the algorithm A, either N
has not been encountered in step AS, or s
where PN is the current approximate pool associated
with none N, for all N E The proof proceeds by
induction on the number of times step AS has been
executed. Suppose step AS has been executed only
once. Then L' = (p1 ,Q) and the only nQde encountered
in step AS is the entry node Pl• The entry pool 0
corresponds to a path of length zero from p1 to p-.
Thus, Q E Fp

1
=> Xp

1
= Q and the proposition is 1

trivially true since xp
1

= 0 s Pp
1

= Q.
Suppose that either N has not been encountered

in step AS, or s PN VN E step AS has been
executed n<k times, k>l. Consider the kth execution
of step AS. Let L' = (N,T) where T = f(N',P ,) for
some N' E I-l(N). The pair (N,T) was added L
when the node N' was processed in the nth execution
of step AS, for n<k. Hence, x,_,, s PN' by inductive
hypothesis. But, using Lemma

s V f(N',f(pt, ... ,f(p1 ,Q)) .. ,)

(pl'' •. ,pt,N' ,N)

f(N'' V f(pt,f(pt-1'' '' ,f(pl,Q))'' .)
(pl, ... ,pt,N')

= f (NI ,XN') •

s PN' and thus s f (N' =>

s f(N' ,PN,) = T, using Lemma 1.

If this step is the first occurrence of node
Nin AS, ;hen PN +- l AT= T since f(N',P) # !_
for any N EN, P E P. In this case, s P = T
after step AS-: Otherwise, suppose this is the

step AS is executed. Hence, the proposition holds
for each execution of step AS. In particular,
XN s PN yN E !:!_ upon termination of the algorithm
A. Hence, the theorem is proved since

